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Basic Counting, Permutations and Combinations, Binomial Coefficients

October 25, 2019

1. (a) How many bit sequences (bit strings) of length 11 are there which start with one of the two
bit sequences 101 or 010, or end with one of the bit sequences 111 or 000, or both?

(b) Consider the following statement: “In a class with 185 students, there are at least x students
all of whose first names start with the same letter of the English alphabet.”. What is the
maximum integer value of x for which this statement is always true?

Solution:

(a) Let A (respectively, B) denote the set of bit sequences of length 11 that start with either 101
or 010 (respectively, that end with either 111 or 000). There are 28 bit sequences of length
11 that start with 101, and likewise 28 bit sequences that start with 010. Since these two sets
are disjoint, we have |A| = 28 + 28 = 29. Similarly, we have |B| = 29. Our goal is to
calculate |A ∪B|. Using the subtraction rule, we have |A ∪B| = |A|+ |B| − |A ∩B|. So,
|A ∪B| = 29 + 29 − |A ∩B| = 210 − |A ∩B|. So, we need to calculate the size of A ∩B.
This is the set of bit strings of length 11 that start with either 101 or 010, and that end with
either 111 or 000. There are 2 · 25 · 2 = 27 such strings, because there are 2 choices for the
first 3 bits, 25 choices for the middle 5 bits, and 2 choices for the last 3 bits.
So, the overall answer is |A ∪B| = 210 − |A ∩B| = 210 − 27 = 27 · (23 − 1) = 27 · 7.

(b) There are 26 letters in the English alphabet. We apply the generalized pigeonhole principal,
which tells us that that there must be at least d18526 e = 8 students whose names start with
the same letter. If all strings are possible as first names, we can not do better 8, because if
the first letter is “as evenly distributed as possible” among the 26 letters there will at most 8
names with the same first letter. (But of course in reality there are likely to be many more
with the same first letter.)

�

2. How many different strings can be formed by reordering the letters of the word:
ABRACADABRA ?

Solution:
There are 11 letters in ABRACADABRA. Of these, 5 are A’s, 2 are B’s, 1 is C, 1 is D, and 2 are
R. So, the number of ways to reorder this string is given by the multinomial coefficient:(

11

5, 2, 1, 1, 2

)
=

11!

5!2!1!1!2!
=

11 · 10 · 9 · 8 · 7 · 6
4

.
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3. Prove that for all integers k, n, such that 1 ≤ k ≤ n, the following inqualities hold (where
e = 2.71828 . . . is the base of the natural logarithm):

(n
k

)k
≤

(
n

k

)
≤

(n · e
k

)k

(Hint: for the upper bound, use “Stirling’s approximation with lower and upper bounds”, given in
the lecture notes.)

Solution:
First, observe that

(
n
k

)k ≤ (
n
k

)
,because

(
n
k

)
= n

k ·
n−1
k−1 . . .

n−k+1
1 ≥ (nk )

k, because n
k ≤

n−i
k−i , for

i < k.

Next, observe that
(
n
k

)
= n·(n−1)...(n−k+1)

k! ≤ nk

k! . By the lower bound of Stirling’s approximation,

we have (k/e)k ≤ k!, and thus nk

k! ≤
nk

(k/e)k
=

(
n·e
k

)k. �

4. Prove the following identity holds for all non-negative integers n,r and k, such that r ≤ n, and
k ≤ r. (Try to give two different proofs: one based on a combinatorial argument, and another by
manipulating the formulas that define binomial coeffients.)(

n

r

)
·
(
r

k

)
=

(
n

k

)
·
(
n− k

r − k

)
Solution:
We show two different proofs:

• Combinatorial:
(
n
r

)
is the number of possibilities to choose r elements from a set of n

elements.
Now consider a set S of n elements. We split S into three disjoint subsets:

– S1 contains k elements
– S2 contains r − k elements
– S3 contains n− r elements

In total all elements are distributed into one of the sets since (n− r) + (r − k) + k = n.
Now the possibilities to choose S1,S2 and S3 can be calculated in two different ways: We
could split S into S3 and S1∪S2 first. For this we need to choose the r elements for S1∪S2

from S which calculates to
(
n
r

)
. Then we split S1 ∪ S2 into S1 and S2. This calculates to(

r
k

)
. In total we get

(
n
r

)
·
(
r
k

)
possibilities to choose S1, S2, S3.

On the other hand we can split S into S1 and S2 ∪ S3 first. There are
(
n
k

)
possibilities. Then

splitting S2∪S3 into S2 and S3 is possible in
(
n−k
r−k

)
, since S2∪S3 has n−r+r−k = n−k

elements and r − k are chosen for S2. So in total there are
(
n
k

)
·
(
n−k
r−k

)
possibilities to split

S in this way.
Since the two procedures produce the same partitions, the number of possible outcomes have
to be equal and we get

(
n
r

)
·
(
r
k

)
=

(
n
k

)
·
(
n−k
r−k

)
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• By the formula:(
n

r

)
·
(
r

k

)
=

n!

r! · (n− r)!
· r!

k!(r − k)!

=
n!

(n− r)! · k! · (r − k)!
· r!
r!

=
n!

(n− r)! · k! · (r − k)!
· (n− k)!

(n− k)!

=
n!

k! · (n− k)!
· (n− k)!

(r − k)! · (n− r)!

=
n!

k! · (n− k)!
· (n− k)!

(r − k)! · (n− k − (r − k))!

=

(
n

k

)
·
(
n− k

r − k

)
�

5. How many different solutions does the following inequality have, in which x1 and x2 must be
non-negative integers and x3 must be a positive integer?

x1 + x2 + x3 ≤ 13

(Show how you have calculated your answer.)

Solution:

By adding an extra non-negative variable that “takes up the slack” in the inequality, we can rewrite
this as finding the number of different solutions to

x1 + x2 + x3 + x4 = 13

when x1, x2, and x4 are non-negative integers and x3 is a positive integer.

However, we can then notice that if we let x′3 = (x3 − 1), then the above is equivalent to the
number of solutions of:

x1 + x2 + x′3 + 1 + x4 = 13

or equivalently, to the number of solutions of:

x1 + x2 + x′3 + x4 = 12

where x1, x2, x′3 and x4 are all non-negative integers.

Finally, as also described in lectures, the number of solutins to this last question is given by the
number of 12-combinations from a 4 element set, which is given by:(

12 + (4− 1)

(4− 1)

)
=

15!

3!12!
=

15 · 14 · 13
6
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