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Induction

October 10th, 2019

1. Use strong induction to show that every positive integer n can be written as a sum of distinct
powers of two, that is, as a sum of a subset of the integers 20 = 1, 21 = 2, 22 = 4, and so on.

Before beginning your proof, state the property (the one you are asked to prove for every integer
n) in completely formal notation with all quantifiers.

Solution:
The sentence we are required to prove can be stated formally as follows:

∀n ∈ Z+ ∃m ∈ Z+ ∃ a1, a2, a3, . . . , am ∈ N
[(∀ i, j ∈ {1, . . . ,m} i 6= j −→ ai 6= aj) ∧ n = 2a1 + 2a2 + · · ·+ 2am ]

or more concisely as follows:

∀n ∈ Z+ ∃S ⊆ N

(
n =

∑
a∈S

2a

)

Base case: The sum with a single element 20 equals 1.

Induction hypothesis: We assume that every l, with l ≤ k, is the sum of distinct powers of two
and then prove it for k + 1 by splitting into the two cases k + 1 is even and k + 1 is odd.

Induction step: Case 1: If k+1 is even then (k+1)/2 is an integer and (k+1)/2 ≤ k. Using the
induction hypothesis we can write (k + 1)/2 as 2a1 + 2a2 + · · ·+ 2am where all ai’s are distinct.
Then,

k + 1 = 2(2a1 + 2a2 + · · ·+ 2am)

= 2 · 2a1 + 2 · 2a2 + · · ·+ 2 · 2am

= 2a1+1 + 2a2+1 + · · ·+ 2am+1

These are clearly distinct powers of two, thus we have proved what we wanted.

Case 2: If k + 1 is odd we apply the induction hypothesis to k to get k = 2a1 + 2a2 + · · ·+ 2am .
However, we know that ai 6= 0 for every i with 1 ≤ i ≤ m because otherwise exactly one element
of the sum would be 20 = 1 and the rest would be even, and thus k would be odd. Therefore,

k + 1 = 2a1 + 2a2 + · · ·+ 2am + 1

= 2a1 + 2a2 + · · ·+ 2am + 20

and {2a1 , 2a2 , · · · , 2am , 20} are all distinct. �
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2. What is wrong with this “proof”?

“Theorem” For every positive integer n, if x and y are positive integers with max(x, y) = n, then
x = y.

Base case: Suppose that n = 1. If max(x, y) = 1 and x and y are positive integers, we have
x = 1 and y = 1.

Induction hypothesis: Let k be a positive integer. Assume that whenever max(x, y) = k and x
and y are positive integers, then x = y. Now let max(x, y) = k + 1, where x and y are positive
integers.

Induction step: Then max(x− 1, y − 1) = k, so by the induction hypothesis, x− 1 = y − 1. It
therefore follows that x = y, completing the induction step.

Solution:
The result is clearly false, so the proof must be wrong. The base case proof is correct, so the
problem has to be in the induction step. The induction hypothesis is stated correctly and it is true
that if max(x, y) = k + 1 then max(x − 1, y − 1) = k, so the problem must be in applying the
induction hypothesis. Analysing the induction hypothesis we see that it requires the numbers to be
positive integers to conclude that they are equal. However, it is applied to the predecessors x− 1
and y− 1 of two positive integers, which are not necessarily positive. By incrementing the size of
k starting from its value in the base case (1) we can find the place where the chain of dominoes (as
described in the textbook) first breaks. For k = 2 take x = 2 and y = 1. Then, max(x, y) = 2.
However, x − 1 = 1 and y − 1 = 0. These numbers are not the values of x and y that we used
in the base case; and if 0 had been allowed we would not have been able to prove the base case.
Thus, the induction chain breaks after the first domino. �

3. Let n ≥ 0 be an integer. Prove by induction:

(a) 8 divides 32n+2 + 7

(b) 64 divides 32n+2 + 56n+ 55

Solution:

(a) We prove this by induction over n:
Base case: For n = 0 we get 32 + 7 = 9 + 7 = 16. 8 divides 16 since 16 = 2 · 8
Induction hypothesis: Assume 8 divides 32n+2 + 7.
Induction step: with (n+1) we get

32(n+1)+2 + 7

=32n+2+2 + 7

=32n+2 · 9 + 7

=32n+2 · 8 + 32n+2 + 7

By the IH we know that 32n+2 +7 is presentable as c · 8. Therefore we get 32(n+1)+2 +7 =
(32n+2 + c) · 8. Since (32n+2 + c) ∈ Z this means 8 divides 32(n+1)+2 + 7 by definition.
By the induction principle 8 divides (32n+2 + 7) for every n ≥ 0

(b) Proof by induction over n:
Base case: For n = 0 we get 32 + 55 = 9 + 55 = 64. 64 divides 64 since 64 · 1 = 64.
Induction hypothesis: Assume 64 divides 32n+2 + 56n+ 55 for some n ≥ 0
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Induction step: For n+ 1 we get:

32(n+1)+2 + 56(n+ 1) + 55

=32n+2 + 56n+ 55 + 32n+2 · 8 + 56

=32n+2 + 56n+ 55 + (32n+2 + 7) · 8

From the IH we know 64 divides 32n+2+56n+55 and therefore 32n+2+56n+55 = 64·c for
some c ∈ Z. From a) we know that 8 divides (32n+2 +7) and therefore (32n+2 +7) = 8 · c′
for some c′ ∈ Z. This means (32n+2 + 7) · 8 = c′ · 8 · 8 = c′ · 64. Together we get
32(n+1)+2 + 56(n + 1) + 55 = 64 · (c + c′). Since c + c′ ∈ Z this means 64 divides
32(n+1)+2 + 56(n+ 1) + 55 by definition.
By the induction principle 64 divides (32n+2 + 56n+ 55) for every n ≥ 0

�

4. A finite continued fraction is either an integer n or of the form n + (1/F ) where F is a finite
continued fraction. For example, 7/9 = 0 + 1/(9/7), 9/7 = 1 + 1/(7/2), 7/2 = 3 + 1/2;
so, 7/9 = 0 + 1/(1 + 1/(3 + 1/2)). Similarly, 17/14 = 1 + 1/(4 + 1/(1 + 1/2)). What you
have to prove is that every rational can be expressed as a finite continued fraction. Let P (k) be
“any rational with denominator k can be expressed as a finite continued fraction”. Prove by strong
induction ∀x ∈ Z+(P (x)).

In your proof you can use the division algorithm: if a is an integer and d a positive integer then
there are unique integers q and r, with 0 ≤ r < d such that a = dq + r.

Solution:
Base case: Show P (1). Consider any rational with denominator 1. Assume it is n/1. Since n is
a continued fraction and n = n/1, P (1) holds.

Induction step: Assume that for some d ∈ Z+ with d > 1 that for any k ∈ Z+, 1 ≤ k < d,
P (k) is true; so, any rational with denominator k can be expressed as a continued fraction. We
show P (d). Consider a rational n/d with denominator d. Use the division algorithm and write
n = dq + r where 0 ≤ r < d. We split into two cases.

(a) r = 0. Then n = dq so n/d = q and, therefore, q is a continued fraction for n/d.

(b) r 6= 0. Since n = dq + r, it follows that n/d = q + r/d = q + 1/(d/r). As 1 ≤ r < d
by the inductive hypothesis there is a continued fraction F for d/r. Therefore, q + 1/F is a
continued fraction for n/d.

�

5. Two sequences {an}n∈Z+ and {bn}n∈Z+ are defined recursively as follows.

a1 = 1 for n ≥ 1 an+1 = an + 2bn
b1 = 1 for n ≥ 1 bn+1 = an + bn

Prove by induction that for all n ∈ Z+, a2n − 2b2n = (−1)n.

Solution:
Base Case: n = 1 and a21 − 2b21 = −1.
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Induction step Assume true for k, that a2k − 2b2k = (−1)k, we now show it holds for k + 1.

a2k+1 − 2b2k+1 = (ak + 2bk)
2 − 2(ak + bk)

2 by definition of the sequences
= a2k + 4b2k + 4akbk − 2(a2k + b2k + 2akbk)
= −1(a2k − 2b2k)
= −1(−1)k by induction hypothesis
= (−1)k+1

�
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