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October 3rd, 2019

1. Many program analysis methods rely on call graphs. A call graph is a binary relation R on function
(or method) names in a program. A pair (f, g) ∈ R when the body of function (method) f in the
program calls the function (method) g. For example, consider the following abstracted code for a
function (method) f where we have taken out all the parameters.

function f() {
g();
h()

}

This means that in the body of f both g and h are called. So, the pairs (f, g) ∈ R and (f, h) ∈ R.
In turn the functions (methods) g, h may call other functions (methods).

The transitive closure of relation R, written R+, is the following binary relation: (f, g) ∈ R+ iff
(f, g) ∈ R or there is n ≥ 1 such that (f, f1) ∈ R, (f1, f2) ∈ R, . . . , (fn, g) ∈ R. That is, there
is a path from f to g of consecutive pairs from R.

The symmetric closure of relation R, written Rs, is the following binary relation: (f, g) ∈ Rs iff
(f, g) ∈ R or (g, f) ∈ R.

(a) Prove that R+ is transitive.
Solution:
For transitivity, we need to show if (f, g) ∈ R+ and (g, h) ∈ R+ then (f, h) ∈ R+. Since
(f, g) ∈ R+ we know that (f, g) ∈ R or there exists a sequence of pairs (f, f1), (f1, f2), ..., (fn, g)
each in R. Furthermore, as (g, h) ∈ R+ we know there (g, h) ∈ R or there is a path
(g, g1), (g1, g2), ..., (gm, h) with pairs in R. So, there is a path which is the witness for
(f, h) ∈ R+: either (f, g), (g, h) or (f, g), (g, g1), (g1, g2), ..., (gm, h) or (f, f1), (f1, f2), ...,
(fn, g), (g, h) or (f, f1), (f1, f2), ..., (fn, g), (g, g1), (g1, g2), ..., (gm, h). �

(b) Explain what information the relations (Rs)+ and (R+)s contain about the function (method)
calls in the program.
Solution:
The relation (Rs)+ contains all pairs (f, g) of functions in Rs or where there is a path from
f to g, where each consecutive pair is in R or its converse is in R. The only functions that
are not in (Rs)+ are those pairs, which are from completely separate parts of the program.
Therefore if a pair (f, g) is not contained in this relation, the program can be split into two
programs, one of which contains f , the other contains g.
The relation (R+)s contains all pairs in R+ and their converses. Therefore each pair (f, g)
is in this relation, iff the two functions f and g could be called in the same execution of the
program. This does not mean they can be separated, as two functions which are never called
in the same execution together might still call the same sub-function. �
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(c) Decide which of the two relations (Rs)+ and (R+)s subsumes the other, give a formal proof
of your claim and show an example relation R and a pair of functions which is contained in
only one of them.
Solution:
The example code above is such that (Rs)+ is strictly larger than (R+)s: the pair (g, h)
is only contained in the first: (f, g), (f, h) ∈ R, therefore (g, f), (f, h) ∈ Rs and thus
(g, h) ∈ (Rs)+. On the other hand R+ = R and therefore neither (g, h) nor (h, g) are in
R+ and so (g, h) 6∈ (R+)s.
The following holds (Rs)+ ⊇ (R+)s. Consider a pair (f, g) ∈ (R+)s. From this we know
that either (f, g) or (g, f) is in R+. By the definition of transitive closure we know that one
of the pairs is in R or there is a path whose consecutive elements are in R. Since Rs has
more elements than R, we can deduce that either both pairs are in Rs or there is a path and
its reverse which contains both pairs; therefore, both are contained in (Rs)+. �

2. A vending machine dispensing books of stamps accepts only £1 coins, £1 notes and £5 notes.

(a) Find a recurrence relation for the number of ways to deposit £n in the vending machine,
where the order in which the coins and notes are deposited matters.

(b) What are the initial conditions?

(c) How many ways are there to deposit £10 for a book of stamps?

Solution:

(a) Let an be the number of ways to deposit £n in the vending machine. We must express an
in terms of earlier terms in the sequence. If we want to deposit £n, we may start with a
pound coin and then deposit n − 1 pounds. This gives us an−1 ways to deposit n pounds.
We can also start with a pound note and then deposit n − 1 pounds. This gives us an−1

more ways to deposit n pounds. Finally, we can deposit a five pound note and follow that
with n − 5 pounds; there are an−5 ways to do this. Therefore the recurrence relation is
an = 2an−1+an−5. Note that this is valid for n ≥ 5, since otherwise an−5 makes no sense.

(b) We need initial conditions for all subscripts from 0 to 4. It is clear that a0 = 1 (deposit
nothing) and a1 = 2 (deposit either the pound coin or the pound note). It is also not hard to
see that a2 = 22 = 4, a3 = 23 = 8 and a4 = 24 = 16, since each sequence of n coins and
notes corresponds to a way to deposit n pounds.

(c) We will compute a5 through a10 using the recurrence relation:

a5 = 2a4 + a0 = 2 · 16 + 1 = 33

a6 = 2a5 + a1 = 2 · 33 + 2 = 68

a7 = 2a6 + a2 = 2 · 68 + 4 = 140

a8 = 2a7 + a3 = 2 · 140 + 8 = 288

a9 = 2a8 + a4 = 2 · 288 + 16 = 592

a10 = 2a9 + a5 = 2 · 592 + 33 = 1217

�
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3. For this question you are not allowed to invoke any set that is known to be uncountable (such as
subsets of R) in your answer. Let A = {a, b, c}. Consider the set F = {f | f : Z+ → A}: that is,
F is the set of all functions from Z+ to A. Using diagonalization, prove that F is uncountable.

Solution:
Towards a contradiction, assume that the set F is countable. Therefore, there is a bijection g :
Z+ → F . So, g is surjective. Assume that g(i) = fi for i ∈ Z+. So F = {f1, . . . , fm, . . .}. Let
f be the function defined as follows: for any n ∈ Z+,

f(n) = if fn(n) = a then b else a

Clearly, f ∈ F ; however, f 6= fi for all i because f(i) 6= fi(i). Therefore, g is not surjective,
which is a contradiction. �

4. Determine (and prove) whether each of these sets is countably infinite or uncountable. For those
that are countably infinite, exhibit a one-to-one correspondence (i.e., bijection) between the set of
positive integers and that set.

(a) the odd negative integers

(b) the real numbers in the open interval (0, 2)

(c) the irrational numbers in the open interval (0, 2)

(d) the set A× Z+ where A = {2, 3}

Solution:
Let X be the set in question.

(a) We prove that X is countably infinite by showing that the function f : Z+ → X defined by
f(x) = −2x + 1 is a bijection. First we have to prove that the codomain of f is actually
X . Let x ∈ Z+. Then, x ≥ 1, so −2x ≤ −2. Therefore f(x) = −2x + 1 ≤ −1, which
means that f(x) is negative and clearly odd. To show that it is injective, let f(x) = f(y).
Then, −2x+ 1 = −2y + 1, from which we get x = y. To show that it is surjective we take
an arbitrary odd negative integer y. Let x = −(y − 1)/2. Clearly f(x) = y so we just have
to show that x ∈ Z+. Given that y is negative and odd, y − 1 is negative and even. Then,
(y − 1)/2 is a negative integer, and thus x = −(y − 1)/2 is a positive integer.

(b) From Cantor’s diagonalization argument we know that the set of real numbers between 0
and 1 is uncountable. We call this set A. Then, we can prove that |X| = |A| by showing that
the function f : A → X given by f(a) = 2a is a bijection. It is clearly injective because if
2a = 2b then a = b, and it is surjective because if x ∈ X then x/2 ∈ A and f(x/2) = x.
Then, if X were countable A would also be countable, which is a contradiction.

(c) The set of real numbers between 0 and 2 is the union of X and the set of rationals between 0
and 2 (we call this set A). The set of rationals between 0 and 2 is countable because there is
an injection into Q (by inclusion). If X were countable then X ∪A would also be countable,
which contradicts the result of (b).

(d) Let f : A× Z+ → Z+ be defined by

f(a, x) =

{
2x if a = 2
2x− 1 if a = 3

To prove that this function is injective, let f(a, x) = f(b, y). If this number is even, then
a = b = 2, which means that f(a, x) = f(2, x) = 2x and f(b, y) = f(2, y) = 2y. Then,
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2x = 2y, which implies that x = y and therefore (a, x) = (b, y). If the number is odd then
a = b = 3, which means that f(a, x) = f(3, x) = 2x− 1 and f(b, y) = f(3, y) = 2y − 1.
Then, 2x − 1 = 2y − 1, which implies that x = y and therefore (a, x) = (b, y). To prove
that f is surjective, let y ∈ Z+. If y is even then let (a, x) = (2, y/2), which is clearly an
element of A×Z+. Then, f(a, x) = 2(y/2) = y. If y is odd then let (a, x) = (3, (y+1)/2),
which is clearly an element of A× Z+. Then, f(a, x) = 2(y + 1)/2− 1 = y.

�

5. Prove that for all sets A if A ⊆ Z+ then either A is finite or |A| = |Z+|.
Solution:
Assume that A ⊆ Z+, that is A only contains positive integers. If A is finite, that is for some
n ≥ 0, |A| = n then we are done. Otherwise A is an infinite set of positive integers. We now
need to show that there is a bijection f : Z+ → A. So, we need to associate an element of A with
each positive integer. One way to do this is to consider the relative ordering of elements in A. For
each a ∈ A, let the index of a in A be i(a) = |{b ∈ A | b ≤ a}|. For each a ∈ A, the index of a
is finite (because A consists of positive integers, so i(a) ≤ a) and is unique (because i(a) = i(b)
iff a = b). As A is infinite for each z ∈ Z+ there is an a ∈ A such that z = i(a). Therefore, the
function f : Z+ → A which maps z to a ∈ A such that i(a) = z is a bijection: clearly it is both
injective and surjective, as required. �
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