
DMMR Coursework 2
Solutions

1. For any integer n ≥ 1, let rn denote the number of different ways that the set [n] := {1, . . . , n}
can be partitioned into disjoint non-empty subsets, the union of which is the entire set [n].
Let us define rn more formally. For a set C, let Pow(C) denote the power set of C, i.e., the set of
all subsets of C. By definition, rn is:

rn = |{S ⊆ Pow({1, . . . , n}) | ∀A ∈ S,A 6= ∅; ∀A,A′ ∈ S, either A ∩A′ = ∅ or A = A′;

& (
⋃
A∈S

A) = {1, . . . , n}}|.

For example r3 = 5. This is because the set {1, 2, 3} can be partitioned in precisely the following 5
distinct ways: {{1}, {2}, {3}} ; {{1}, {2, 3}} ; {{2}, {1, 3}} ; {{3}, {1, 2}} ; & {{1, 2, 3}}.
Prove that, for all even integers n ≥ 2,

(n/2)(n/2) ≤ rn ≤ (n)n.

(Hint: for establishing the lower bound, suppose you only count those partitions of [n] that have
exactly n/2 parts, and such that each of the numbers 1, 2, . . . , (n/2) is in a separate part of the
partition.) (10 Marks)

Solution:
To establish the lower bound, rn ≥ (n/2)(n/2), notice that if we only count those partitions where
there are exactly n/2 parts, and each of the numbers 1, 2, . . . , (n/2) is in a separate part of the
partition, then we can count these partitions by counting the number of distinct functions, f ,
“assigning” to each of the remaining (n/2) numbers in the set D = {(n/2)+1, . . . , n}, a “label”
from [n/2] = {1,. . . ,n/2}. This is because for each number j ∈ D, we use the the “label” f(j) to
indicate that j is in the same partition as f(j) ∈ {1, . . . , n/2} = [n/2]. Since the elements of
[n/2] are all in separate parititions, each such function describes a different such partition. Now
simply recall that, since |D| = n/2 = |[n/2]|, the number of distinct functions f : D → [n/2] is
(n/2)(n/2). Thus rn ≥ (n/2)(n/2).

To establish the upper bound rn ≤ nn, let’s observe that we can view a function f : [n]→ [n] as
specifying a partition of [n], by mapping each i ∈ [n] to the “name” j = f(i) of its parition. More
formally, f defines a partition of [n] as follows: for each j ∈ [n] such that f−1(j) 6= ∅, let f−1(j)
be one part of the partition of [n]. Clearly, every i ∈ [n] does get assigned to some partition,
and only one partition, namely the partition whose “name” is f(i). It is clear that every possible
partition can be described this way, so rn ≤ nn. However, note that this is a (very) redundant
way to represent partitions: many different functions will represent the same partition (just by
“renaming” the different parts of the partition). This is why we can only conclude that rn ≤ nn

from this argument.

Let us mention that the numbers rn are called Bell Numbers in the combinatorics literature, and
they are typically denoted by Bn. There is no simply formula known for the exact value of Bn. �
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2. Prove the following identity on binomial coefficients: for all integers n ≥ 1,

n∑
k=1

k ·
(
n

k

)
= n · 2n−1.

(You can prove this either combinatorially, or by using and manipulating formulas that define bi-
nomial coefficients.) (10 Marks)

Solution:
Let us first give a “combinatorial” proof: suppose we have a set of n people, [n] = {1, . . . , n}. The
left hand side of the formula counts the number of ways that we can, for each k ∈ {1, . . . , n} =
[n], choose a k-member committee (i.e., a k-element subset) from [n], and furthermore choose
one of those k elements to be their “leader”. The right hand side counts this same set in a different
way: it counts the number of ways we can choose a leader from the set [n] (there are n ways to
do this), and then from the remaining n − 1 elements choose some subset (including the empty
subset), which will form all the non-leader members of the committee. Note that both the left and
right hand side are counting the same thing.

Let us now prove this using the defining formula for binomial coefficients, and using the fact that
2n−1 = (1+1)n−1 =

∑n−1
j=0

(
n−1
j

)
, which follows directly from the binomial theorem, as seen in

class.

n · 2n−1 = n · (1 + 1)n−1

= n ·
n−1∑
j=0

(
n− 1

j

)
(by the Binomial Theorem)

= n ·
n−1∑
j=0

(n− 1)!

j!(n− 1− j)!

=

n−1∑
j=0

n!

j!(n− 1− j)!

=

n∑
k=1

n!

(k − 1)!(n− k)!
(by letting k = j + 1)

=

n∑
k=1

k · n!

k!(n− k)!

=
n∑
k=1

k ·
(
n

k

)
�

3. Let G = (V,E) be a directed graph (digraph). For any subsets X,Y ⊆ V of vertices, let
E(X,Y ) := {(u, v) ∈ E | u ∈ X & v ∈ Y } denote the set of edges going from a vertex in
X to a vertex in Y . For a subset A ⊆ V of vertices, let dout(A) = |E(A, V − A)| denote the
total number of edges exiting A, and going to a vertex outside of A. Note that, by definition,
dout(∅) = 0.

Prove that for any directed graph G = (V,E), and for all subsets A,B ⊆ V of its vertices, the
following inequality holds:

dout(A) + dout(B) ≥ dout(A ∩B) + dout(A ∪B).
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(Hint: Consider the setsE(A, V −A), E(B, V −B), E(A∪B, V −(A∪B)), andE(A∩B, V −
(A ∩B)). Partition these sets into appropriate pieces, to show that the inequality holds.)

(10 Marks)

Solution:
We will prove the inequality by proving that:

dout(A) + dout(B) = dout(A∩B) + dout(A∪B) + |E(A−B,B −A)|+ |E(B −A,A−B)|.

The inequality then follows immediately. To prove this, we proceed as described in the hint,
partitioning sets like E(A, V − A) into a disjoint union of subsets. As a consequence, note that
the following equalities hold (can visualize using “Venn diagrams, with arrows” for edges):

dout(A) = = |E(A ∩B, V −A)|+ |E(A−B, V −A)|
dout(B) = = |E(A ∩B, V −B)|+ |E(B −A, V −B)|

dout(A ∩B) = |E(A ∩B, V − (A ∪B))|+ |E(A ∩B,A−B)|+ |E(A ∩B,B −A)|
dout(A ∪B) = |E(A ∩B, V − (A ∪B))|+ |E(A−B, V − (A ∪B))|+ |E(B −A, V − (A ∪B))|

Note furthermore that V −A−B = V −B −A = V − (A ∪B), and hence that:

|E(A ∩B, V −A)| = |E(A ∩B, V − (A ∪B))|+ |E(A ∩B,B −A)|
|E(A ∩B, V −B)| = |E(A ∩B, V − (A ∪B))|+ |E(A ∩B,A−B)|

Likewise, we have:

|E(A−B, V −A)| = |E(A−B, V − (A ∪B))|+ |E(A−B,B −A)|
|E(B −A, V −B)| = |E(B −A, V − (A ∪B))|+ |E(B −A,A−B)|

Hence, we have:

dout(A) + dout(B) = |E(A ∩B, V −A)|+ |E(A−B, V −A)|+
|E(A ∩B, V −B)|+ |E(B −A, V −B)|

= |E(A ∩B, V − (A ∪B))|+ |E(A ∩B, (B −A))|+
|E(A−B, V − (A ∪B)|+ |E(A−B,B −A)|+
|E(A ∩B, V − (A ∪B)|+ |E(A ∩B,A−B)|+
|E(B −A, V − (A ∪B))|+ |E(B −A,A−B)|

= dout(A ∩B) + dout(A ∪B) + |E(A−B,B −A)|+ |E(B −A,A−B)|

This completes the proof of the claim. �

4. A bag contains 12 balls of the same shape and size. Of these, 9 balls are blue, and the remaining
3 balls are red.

Suppose that you do the following iterative random experiment:

In each iteration, 5 balls are removed randomly (without replacement) from the bag, in such a way
that any 5 balls originally in the bag is equally likely to be the 5 balls that are removed from the
bag.

After doing this, you check whether among the 5 removed balls there are exactly 2 red balls. If so,
then you STOP. Otherwise, you replace the 5 balls back into the bag, shake the bag up (to make
sure it is randomly mixed again), and repeat the same experiment: random sample 5 balls from the
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bag, and check whether you have taken out exactly 2 red balls. You repeat this until the process
STOPs (i.e., when the 5 removed balls in some iteration contain exactly 2 red balls among them).
What is the expected number of times that you will sample 5 balls from this bag, in the above
random experiment? Explain your calculation. (10 Marks)

Solution:

This expected value is (
12
5

)(
3
2

)(
9
3

) .
To see why, note that the probability of removing exactly 2 red balls, when 5 balls are removed
from the bag containing 12 balls, 3 of which are red, is

p =

(
3
2

)(
9
3

)(
12
5

) .

This is because there are
(
12
5

)
ways to choose 5 balls out of the bag (the denominator), and of

these there are
(
3
2

)(
9
3

)
ways of choosing exactly 2 red balls (and hence necessarily 3 blue balls.

Now, the random experiment that is described essentially repeats this same experiment until we
get “success”, i.e., until we draw exactly 2 red balls. This defines a geometrically distributed
random variable with parameter p, and we learned in class that the expected value of such a

random variable is 1/p. Hence the expected value is (125 )
(32)(

9
3)

.

�

5. For a positive integer n ≥ 1, let π : [2n] → [2n] denote some permutation of the set [2n] =
{1, 2, . . . , 2n}. In other words, π is a bijection from [2n] to itself. For such a permuation, π, let
bπ = |{i ∈ [2n] | π(i) > 2i}| denote the number of indices, i ∈ [2n], such that π(i) > 2i.

Suppose that the permutation π is chosen uniformly at random from the set of all permutations of
the set [2n], meaning that each permutation of [2n] is equally likely (has the same probability) to
be chosen. What is the expected value of bπ? Explain your calculation. (10 Marks)

Solution:
For a randomly chosen permutation π, and for each i ∈ [2n], let Xi be a random variable that is
equal to 1 if π(i) > 2i, and is 0 otherwise. Note that if we let X =

∑2n
i=1Xi, then X = bπ is

the number of indices i for which π(i) > 2i. We are interested in the expected value E(X). By
linearity of expectation, E(X) =

∑2n
i=1E(Xi).

But what is E(Xi)? It is simply the probability that, for a randomly chosen permutation, π, we
have π(i) > 2i. Note that for i ≥ n, E(Xi) = 0, because we can not have π(i) > 2i ≥ 2n. So,
let us focus on i ∈ [n− 1]; since π is chosen uniformly at random from all permutations, it is not
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hard to see that the probability E(Xi) is 2n−2i
2n = n−i

n . Thus

E(X) =

2n∑
i=1

E(Xi)

=

n−1∑
i=1

E(Xi)

=
n−1∑
i=1

n− i
n

=
n−1∑
j=1

j

n
(by letting j = n− i)

=
1

n
·
n−1∑
j=1

j

=
1

n
· (n− 1)n

2

=
n− 1

2

�
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