
DMMR Coursework 1

October 3rd, 2019

1. (a) Prove that if the square of integer z is divisible by 17 then z is divisible by 17. (6 marks)

(b) Prove that
√
17 is irrational. (6 marks)

Solution:

(a) Assume z is an integer and that z2 is divisible by 17. By the division algorithm we know that
z = 17q + r for some integers q and r where q is the quotient and r is the remainder with
0 ≤ r < 17. We need to show that r = 0. Consider z2 = (17q+r)2 = (172q2+34qr+r2);
now z2 is divisible by 17. Therefore, r2 is divisible by 17; however this can only be true in
the case that r = 0 as 17 does not divide i2 for any i : 1 ≤ i ≤ 16 as it is prime.

(b) We use a similar proof method that showed
√
2 is irrational in lectures. We do this using

proof by contradiction. Assume
√
17 is rational, so

√
17 = a

b where a, b are integers in
lowest terms with no common factors. So we now square both sides 17 = a2

b2
. So a2 = 17b2;

so a2 is divisible by 17; therefore, by the first part of the question a is divisible by 17. So
a = 17a′ for some integer a′; so b2 = a2

17 = 172a′

17 = 17a′; so, in turn, b2 is divisible by 17
and therefore so is b again by the first part. However this contradicts that a and b have no
common factors as 17 is a common factor.

�

2. Recall that for sets A and B, |A| = |B| if there is a bijection f : A→ B, a function f that is both
injective (one-to-one) and surjective (onto). Let E = {0, 2, 4, . . .} be the set of non-negative even
integers.

(a) Give an example of a function g : E → E that is injective but not surjective. (3 marks)

(b) Prove that |Z| = |E| by defining an explicit bijection. (5 marks)

Solution:

(a) Any plausible g here such as g(x) = 2x, so g(2) = 4 and so on. This is clearly injective as
g(x) = g(y) implies x = y. However, it is not surjective as elements that are not divisible
by 4, such as 2 and 6, are not mapped to. No marks if g is not a function from E to E.

(b) They need to produce a bijection from g : Z → E such as g(n) = 4n for n ≥ 0 and
g(n) = −4n − 2 for n < 0 and explain why it is a bijection. No marks if the function
is not from Z to E. Reduce marks if the function is not given explicitly (such as, as an
enumeration).

�
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3. A = Z+ × Z+ is the set of pairs (a, b) of positive integers a, b. Consider the following binary
relation R on A: (a, b)R(c, d) iff ad = bc. You are to show that R is an equivalence relation, as
follows.

(a) Prove that R is reflexive (3 marks)

(b) Prove that R is symmetric (3 marks)

(c) Prove that R is transitive (4 marks)

Solution:

(a) For reflexivity they need to show (a, b)R(a, b) (and not (a, a)R(a, a) which although true
isn’t what is required); this is clear as ab = ba.

(b) For symmetry they need to show that if (a, b)R(c, d) then (c, d)R(a, b); this is clear as
ad = bc iff cb = da.

(c) For transitivity they need to show that if (a, b)R(c, d) and (c, d)R(e, f) then (a, b)R(e, f);
as ad = bc and cf = de therefore adcf = bcde, and so as all the integers are positive
af = be.

�

4. (a) Prove by induction that for every positive integer n (7 marks)

n∑
j=1

j2j = (n− 1)2n+1 + 2

(b) Using Fermat’s little theorem compute 1114 mod 7. (3 marks)

Solution:

(a) For the base case n = 1. LHS is 2 as is RHS. 1 mark for this. For the inductive step assume
it holds for n = k. Show it for n = k + 1.

k+1∑
j=1

j2j =

k∑
j=1

j2j + (k + 1)2k+1

Using the IH, LHS is

(k − 1)2k+1 + 2 + (k + 1)2k+1 = 2k2k+1 + 2 = k2k+2 + 2

as required. 6 marks here; 3 for using induction hypothesis and 3 for getting it all correct.

(b) If p is prime and p 6 |a then ap−1 ≡ 1 (mod p). So, 1114 = 1112112. Therefore, 1114 ≡
112 (mod 7) ≡ 2 (mod 7) because 116 ≡ 1 (mod 7).

�

5. Assume a, b,m are positive integers and d = gcd(a,m). Prove the following equivalence: the
congruence ax ≡ b (mod m) has an integer solution z iff d|b. (You can use Bézout’s theorem in
the proof.) (10 marks)

Solution:
Assume a, b,m are positive integers and d = gcd(a,m). First we show that if the congruence

2



ax ≡ b (mod m) has an integer solution z then d|b. Assume ax ≡ b (mod m) has the integer
solution z. So az ≡ b (mod m) which by definition of ≡ (mod m), means m|(az − b). So
az − b = cm for some integer c and so az − cm = b. Since d = gcd(a,m), d|az and d|cm, and
therefore d|b as required. 5 marks for this half of the proof.

Now for the other implication: if d|b then the congruence ax ≡ b (mod m) has an integer solution
z. Assume d|b, so b = cd for some integer c. We now use Bézout’s theorem, that d = as + tm
for some integers s, t. So, b = csa+ ctm. Consequently ctm = b− csa and so m|(acs− b) and
therefore by definition acs ≡ b (mod m). However cs is an integer and therefore is a solution z
to ax ≡ b (mod m). 5 marks for this half. �

Solutions to questions to be handed in to the ITO before 10.00am on Monday 21st October. Don’t
forget to write your student number clearly on your solution sheet. No other method of submission
(such as by email) will be accepted.

Good Scholarly Practice: Please remember the University requirement as regards all assessed work for
credit. Details about this can be found at:

http://web.inf.ed.ac.uk/infweb/admin/policies/
academic-misconduct
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