
Lecture Notes

Data Mining and Exploration

Michael Gutmann and Arno Onken

School of Informatics

Spring Semester 2021

January 2021

Contents

Preface vii

1 First Steps in Exploratory Data Analysis 1

1.1 Numerical Data Description . 1

1.1.1 Location . 1

1.1.2 Scale . 3

1.1.3 Shape . 4

1.1.4 Multivariate Measures . 5

1.2 Data Visualisation . 10

1.2.1 Bar Plot . 10

1.2.2 Box Plot . 11

1.2.3 Scatter Plot . 12

1.2.4 Histogram . 12

1.2.5 Kernel Density Plot . 12

1.2.6 Violin Plot . 15

1.3 Data Pre-Processing . 15

1.3.1 Standardisation . 15

1.3.2 Outlier Detection and Removal 17

2 Principal Component Analysis 19

2.1 PCA by Variance Maximisation . 19

2.1.1 First Principal Component Direction 19

2.1.2 Subsequent Principal Component Directions 21

2.1.3 Simultaneous Variance Maximisation 23

2.2 PCA by Minimisation of Approximation Error 23

2.3 PCA by Low Rank Matrix Approximation 25

2.3.1 Approximating the Data Matrix 25

2.3.2 Approximating the Sample Covariance Matrix 27

2.3.3 Approximating the Gram Matrix 28

2.4 Probabilistic PCA . 29

2.4.1 Probabilistic Model . 29

2.4.2 Joint, Conditional and Observation Distributions 29

2.4.3 Maximum Likelihood . 31

2.4.4 Relation to PCA . 33

iv CONTENTS

3 Dimensionality Reduction 35

3.1 Linear Dimensionality Reduction 35

3.1.1 From Data Points . 35

3.1.2 From Inner Products . 36

3.1.3 From Distances . 37

3.1.4 Example . 38

3.2 Dimensionality Reduction by Kernel PCA 39

3.2.1 Idea . 39

3.2.2 Kernel Trick . 40

3.2.3 Example . 41

3.3 Multidimensional Scaling . 42

3.3.1 Metric MDS . 42

3.3.2 Nonmetric MDS . 45

3.3.3 Classical MDS . 45

3.3.4 Example . 46

3.4 Isomap . 46

3.5 UMAP . 47

4 Predictive Modelling and Generalisation 51

4.1 Prediction and Training Loss . 51

4.1.1 Prediction Loss . 51

4.1.2 Training Loss . 52

4.1.3 Example . 53

4.2 Generalisation Performance . 55

4.2.1 Generalisation for Prediction Functions and Algorithms . . 56

4.2.2 Overfitting and Underfitting 57

4.2.3 Example . 59

4.3 Estimating the Generalisation Performance 60

4.3.1 Methods for Estimating the Generalisation Performance . . 61

4.3.2 Hyperparameter Selection and Performance Evaluation . . 64

4.4 Loss Functions in Predictive Modelling 66

4.4.1 Loss Functions in Regression 67

4.4.2 Loss Functions in Classification 67

A Linear Algebra 73

A.1 Matrices . 73

A.2 Vectors . 74

A.3 Matrix Operations as Operations on Column Vectors 75

A.4 Orthogonal Basis . 77

A.5 Subspaces . 78

A.6 Orthogonal Projections . 79

A.7 Singular Value Decomposition . 79

A.8 Eigenvalue Decomposition . 80

A.9 Positive Semi-definite and Definite Matrices 81

A.10 Matrix Approximations . 81

Data Mining and Exploration, Spring 2021

CONTENTS v

B Proofs Related to PCA 87
B.1 Sequential Maximisation Yields Simultaneous Maximisation 87
B.2 Equivalence to PCA by Variance Maximisation 89

Data Mining and Exploration, Spring 2021

Preface

With the massive progress in automation and computerisation, more data than
ever are constantly generated. Sources of data range from scientific measurements
to internet searches and connected devices. The aim of the course “Data Mining
and Exploration” is to introduce and discuss modern techniques for analysing,
interpreting, visualising and exploiting the data that are captured in scientific
and commercial environments.

In the Large Hadron Collider, for example, 600 terabyte of raw data are
generated per second when high energy particles colliding.1 Not all data are of
interest, and it is major challenge to extract useful information from that huge
amount of raw data.

Figure 1 illustrates the amount of data generated in the digital world, which
includes more than 500 hours of video uploaded to YouTube or more than 400’000
hours of Netflix video streamed per minute in 2020. As another example, sensors
in modern cars produce a steady stream of data, with connected cars estimated to
produce 25 gigabytes of data per hour.2 As in the physics example, the raw data
itself will not be useful but it contains valuable information that some companies
may wish to extract for diagnostics and product improvement, or because of its
monetary value for third-parties such as insurance companies.

The pervasiveness of data generation and collection raises a number of im-
portant issues related to privacy and fairness.3 These societal issues need to be
taken into account when analysing data, interpreting the results and ultimately
making decisions, and are explored in the second half of the course as part of pa-
per presentations and potentially in the mini-projects. These lecture notes, and
the associated computer labs, deal with the technical aspects of data analysis as
taught in the first half of the course.

Figure 2 provides an overview of the overall data analysis process, showing
the key steps (green ovals) and associated questions addressed. The diagram
highlights that the data analysis process is iterative. On the one hand, we may
want to go back a step when, for example, sanity checks flag potential issues.
On the other hand, unless data collection has been carefully designed, the data
collection and analysis are often coupled and this feedback loop needs to be kept
in mind. In recommendation systems, for instance, users may not choose certain
items solely because they have not been recommended to them and are unable to
choose them. Absence of selected items in the data should thus not be considered

1https://home.cern/science/computing/processing-what-record
2https://www.statista.com/chart/8018/connected-car-data-generation/
3See, for example, Understanding artificial intelligence ethics and safety by D. Leslie, https:

//arxiv.org/abs/1906.05684

https://home.cern/science/computing/processing-what-record
https://www.statista.com/chart/8018/connected-car-data-generation/
https://arxiv.org/abs/1906.05684
https://arxiv.org/abs/1906.05684

viii Preface

as evidence of any disliking. Ignoring the feedback loop between data analysis
and collection can lead to “filter bubbles” and associated biases in, for example,
media consumption or predictive policing.4

The lecture notes focus on the three steps on the right side of the data analysis
cycle in Figure 2—exploratory data analysis, pre-processing, and performance
evaluation in (predictive) model building & fitting. The other topics are covered
or explored in the paper presentations and the mini-projects in the second half
of the course.

The lecture notes were first written by Michael Gutmann when he revived
the course “Data Mining and Exploration” in academic year 2016-17 after it has
not been taught for some years. They were expanded and partly re-organised
by Arno Onken when he was teaching the course in the following years, adding
sections on probabilistic PCA and UMAP, re-organising and adding new material
to the first chapter and delegating proofs to the appendix. The text was revised
by Michael Gutmann, adding and clarifying some minor explanations, when he
was teaching the course again in academic year 2020-21 as part of the COVID-19
teaching adjustments of the School of Informatics.

Michael Gutmann and Arno Onken
Edinburgh, January 2021

4See, for example, https://en.wikipedia.org/wiki/Filter_bubble, or Ethical principles
in machine learning and artificial intelligence: cases from the field and possible ways forward,
Humanit Soc Sci Commun 7, 9, 2020, https://www.nature.com/articles/s41599-020-0501-9

Data Mining and Exploration, Spring 2021

https://en.wikipedia.org/wiki/Filter_bubble
https://www.nature.com/articles/s41599-020-0501-9

ix

Figure 1: Data generated in the digital world in 2020. Figure adapted from
https://www.domo.com/learn/data-never-sleeps-8

Data Mining and Exploration, Spring 2021

https://www.domo.com/learn/data-never-sleeps-8

x Preface

Get (raw) data

Deploy the
product /

Communicate
findings

Sanity checks

- where are you now?
- what do you want to do?
- constraints?

- understand the
 sampling process
- any biases?
- feeback loops
 between data analysis
 and collection?

- become familiar with the data
- spot unexpected properties
- anomalies, outliers, missing data?

Exploratory
data analysis

- merge data sets, reformat
- provide rationale for
 possible data exclusion
- reduce dimensionality

Preprocessing
and data prep

Build and
fit model

- generalisation is the goal
- choice of evaluation metric
- choice of hyperparameters

Summarise, vis-
ualise results

- can you tell a simple and
 coherent story?
- what makes sense, what not?
- limitations, uncertainties?

Objectives and
key results

Figure 2: Overview of the data analysis process.

Data Mining and Exploration, Spring 2021

Chapter 1

First Steps in Exploratory
Data Analysis

This chapter is about the first steps of exploratory data analysis. It is assumed
that we have available n data points x1, . . . ,xn each containing d attributes and
that the data have been transformed to numbers. Each data point xi thus is
a d dimensional vector. We first explain numerical summaries of the data, and
then methods to visualise their properties. This is followed by some elements of
preprocessing for further analysis of the data. The presented methods are simple
and inexpensive to compute. They provide invaluable descriptive statistics of
the data that should generally always be first computed before any further data
analysis is performed.

1.1 Numerical Data Description

This section covers a range of numerical measures to characterise a dataset. The
measures provide answers to questions such as the following ones: Where are
the data located? Where is the centre of the distribution? How scattered are
the data? The measures vary in how robust they are to measurement errors and
outliers.

1.1.1 Location

Location measures provide answers to questions about the overall location of the
data. The sample mean, also simply known as arithmetic mean or average is the
most well-known and most commonly used location measure. It is defined as

x̄ =
1

n

n∑
i=1

xi. (1.1)

Assuming that the data were drawn from a random variable x with probability
density function p, the sample mean x̄ of the data is an estimate of the mean or
expected value of x,

E[x] =

∫
ξp(ξ)dξ. (1.2)

2 First Steps in Exploratory Data Analysis

For multivariate data, the vector-valued mean is the element-wise mean:

x̄ =

x̄1

x̄2
...
x̄d

 =
1

n

n∑
i=1

xi (1.3)

Another common location measure is the median. It splits the samples into
two chunks of equal size and can be thought of as the centre of the distribution.
It can be found by ordering the samples and then taking the value of the sample
in the middle if the number of samples is odd, or the mean of the middle two
samples if the number of samples is even. More formally, let x(1), x(2), . . . , x(n)
denote the ordered samples, so that x(1) ≤ x(2) ≤ · · · ≤ x(n). The median of
these samples is defined as:

median(x) =

{
x((n+1)/2) if n is odd
1
2(x(n/2) + x(n/2+1)) if n is even

(1.4)

In contrast to the mean, the median is robust to corrupted observations (i.e.
outliers, see Section 1.3.2). The precise location of most data points does not
affect the median. Let us assume that an observation is recorded at xi + δ rather
than xi because of a malfunction of the measurement device. The mean then
changes from x̄ to x̄ + δ/n which can be arbitrarily large, while the median
changes at most to a neighbouring observation.

For instance, the first 10 training digits of the MNIST dataset (a large dataset
of handwritten digits that is commonly used for training various image processing
systems), sorted from lowest to highest are:

(0, 1, 1, 1, 2, 3, 4, 4, 5, 9) (1.5)

The median is (2 + 3)/2 = 2.5 whereas the arithmetic mean is 3.0.
If we change the last element from 9 to 9000, thus obtaining the list

(0, 1, 1, 1, 2, 3, 4, 4, 5, 9000), (1.6)

then the median is still 2.5 whereas the mean changes dramatically from 3.0 to
902.1.

Another measure of the location of the data that is more robust than the
average is the trimmed average. It is the average of the data when leaving out
the smallest and largest k < n/2 values,

1

n− 2k

n−k∑
i=k+1

x(i). (1.7)

If k = 0, the trimmed average is the usual sample average. As k approaches n/2,
the trimmed average approaches the median.

A further important measure is the mode. It is the value that occurs most
frequently. The mode is not necessarily unique: there can be more than one mode
if several different values occur equally often. The mode is always applicable and

Data Mining and Exploration, Spring 2021

1.1 Numerical Data Description 3

meaningful even if the data attributes are just categorical and unordered (e.g.
nationality and gender). In the example above, the mode is 1.

Besides the median, we can define additional robust quantities that are in-
variant to the precise location of most data points. The α-th sample quantile qα
is roughly the data point with a proportion α of the ordered data x(i) to its left,
i.e. qα ≈ x(dnαe). For example, the minimum and the maximum are the 0 and
1 quantiles q0 and q1 and the median is the 0.5 quantile q0.5. Like the median,
quantiles are often computed by interpolation if αn is not an integer.

The quartiles Q1, Q2 and Q3 are given by q0.25, q0.5 and q0.75 respectively. To
obtain the first and the third quartiles, we can split the ordered dataset into a
lower half L1 and an upper half L2, where we include the median in both L1 and
L2 if the number of samples n is odd. The first quartile Q1 is then the median
of L1 and the third quartile Q3 is the median of L2.

1.1.2 Scale

Scale measures answer questions about the spread of the data. The sample vari-
ance is the mean squared difference from the sample mean:

var(x) =
1

n

n∑
i=1

(xi − x̄)2 =
1

n

n∑
i=1

x2
i − x̄2 (1.8)

It is an estimator of the variance of the random variable x,

Var[x] =

∫
(ξ − E[x])2p(ξ)dξ = E[x2]− E[x]2. (1.9)

The variance is the expected value of the squared deviation of the random variable
from the mean. This is also know as the second central moment. “Central”
because it refers to the deviation from the mean, and “second”, because it refers
to the squared deviation, i.e. the power two. Other powers also provide useful
measures which we will encounter in the following sections.

In our definition of the sample variance we divide by n. Other variance
estimators divide by n− 1 (known as Bessel’s correction1) rather than n.

Note that the variance does not have the same unit as the samples: the
variance unit is the squared sample unit. The sample standard deviation is given
by std(x) =

√
var(x) which has same unit as the samples.

Because of the squaring, the sample variance is more affected by outliers than
the sample mean. The median can be used to obtain a more robust measure of
the scale of the data: instead of measuring the average squared deviation from
the average, we measure the median absolute deviation from the median,

MAD(x) = median(|xi −median(x)|) (1.10)

This measure has the same units as the xi themselves.
The range x(n)− x(1), i.e. the difference between the largest and the smallest

value, is another measure of the scale of the data, but it is not robust. A more

1The reason for this correction is a bias that arises from the sample mean. To see this,
calculate E[var(x)] by expanding x̄ and compare to Var[x]. For large n the bias is small, so for
conceptual simplicity in later chapters we use the more intuitive biased sample variance.

Data Mining and Exploration, Spring 2021

4 First Steps in Exploratory Data Analysis

robust quantity is the difference between the upper and lower end of what contains
the central 50% of the data. The interquartile range (IQR) is defined as the
difference between the first and the third quartile:

IQR = Q3 −Q1 (1.11)

We will later use the IQR to detect unusual data points.
Returning to our MNIST example,

(0, 1, 1
Q1

, 1, 2 ,
Q2

3, 4, 4
Q3︸ ︷︷ ︸

IQR

, 5, 9) (1.12)

the sample standard deviation is
√

6.4 ≈ 2.53, the MAD is 1.5 and the IQR is
4− 1 = 3.

1.1.3 Shape

The sample skewness measures the asymmetry of the data. It is defined as

skew(x) =
1

n

n∑
i=1

(
xi − x̄
std(x)

)3

(1.13)

Subtraction of the mean and division by the standard deviation normalises the
terms in the brackets: the variable z = x−x̄

std(x) has zero mean and unit standard
deviation. Location and scale are therefore not taken into account by skewness.

For unimodal distributions, positive skewness means that the distribution has
a longer right tail, that is, the mass is concentrated on the left of the distribution
and elongated on the right. For negative skewness, it is the other way around:
the distribution has a longer left tail. Data that are symmetric around their mean
have zero skewness. The converse, however, is not true: zero skewness does not
necessarily mean that the data are symmetric around their mean.

Due to the third power, sample skewness is sensitive to outliers. A more
robust measure can be obtained by means of the quartiles,

Galton’s measure of skewness =
(Q3 −Q2)− (Q2 −Q1)

Q3 −Q1
. (1.14)

The denominator is the interquartile range and normalises the skewness measure
like the standard deviation in (1.13). By definition of the quartiles, both Q3 −
Q2 and Q2 − Q1 are positive. The first term measures the range of the third
quarter while the second term measures the range of the second quarter. Galton’s
skewness thus computes the difference between the ranges of the two quarters in
a normalised way. It is positive if the range of the third quarter is larger than
the range of the first quarter, and conversely. Figure 1.1 shows an example.

If we take the sample skewness equation with the fourth power instead of the
third, then we get a measure called the sample kurtosis:

kurt(x) =
1

n

n∑
i=1

(
xi − x̄
std(x)

)4

(1.15)

Data Mining and Exploration, Spring 2021

1.1 Numerical Data Description 5

x

0 2 4 6 8 10

p
ro

b
a
b
ili

ty
 d

e
n
s
it
y
 f
u
n
c
ti
o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Long (heavy) upper tails

x

0 0.5 1 1.5 2 2.5 3

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y
 f

u
n

c
ti
o

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Zoom

Figure 1.1: Example of positive skewness. The distribution has skewness equal
to 6.18 according to (1.13), its interquartile range is 1.45, and Q3 − Q2 = 0.96
while Q2 − Q1 = 0.49, so that Galton’s measure of skewness is positive. The
black dashed line indicates the mean, while the three red lines show from left to
right Q1, Q2, and Q3.

Due to the fourth power, kurtosis is insensitive to the symmetry of the distribution
of x. It measures how often x takes on values that are considerably larger or
smaller than its standard deviation; it is said to measure how heavy the tails of
the distribution of x are. Figure 1.2 shows the function u 7→ u4. The function is
relatively flat for −1 < u < 1 so that kurtosis basically ignores the behaviour of x
within one standard deviation around its mean. The function then grows rapidly
and values larger than two standard deviations away from the mean contribute
strongly to the value of kurtosis.

A robust version of the kurtosis can be defined using quantiles:

robust kurtosis(x) =
(q7/8 − q5/8) + (q3/8 − q1/8)

Q3 −Q1
(1.16)

This measure estimates the lengths of the upper and lower tails and normalises
with the IQR. Further robust measures of kurtosis and skewness are discussed by
Kim and White (2004).

1.1.4 Multivariate Measures

We now consider measures of dependency between two or more variables. The
sample covariance between observations of two variables x = (x1, . . . , xn) and
y = (y1, . . . , yn) measures the strength of linear association between them. It is
given by

cov(x, y) =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ) (1.17)

and is an estimator of the covariance of two random variables x and y

Cov[x, y] = E [(x− E[x])(y − E[y])] = E [xy]− E[x]E[y]. (1.18)

Data Mining and Exploration, Spring 2021

6 First Steps in Exploratory Data Analysis

number of standard deviations around the mean

-3 -2 -1 0 1 2 3

4
-t

h
 p

o
w

e
r

0

10

20

30

40

50

60

70

80

90

Figure 1.2: The figure shows the function u 7→ u4 that occurs in the definition of
the kurtosis. It is relatively flat on (−1, 1) and grows quickly for values outside
the interval.

Like for the variance, other estimators of the covariance divide by n − 1 rather
than n. It holds Cov[x, x] = Var[x], Cov[x, y] = Cov[y, x], and Cov[ax + b, y] =
aCov[x, y]. The value of the covariance thus depends on the scale of x and y
which is often undesirable.

Pearson’s correlation coefficient (also simply known as correlation coefficient)
normalises the covariance using the product of standard deviations:

ρ(x, y) =
cov(x, y)

std(x)std(y)
(1.19)

The measure takes values between -1 and 1 and is also known as linear correlation
coefficient, because it measures linear relation. To see this, suppose that y =
ax+b where a 6= 0 and b are constants. From the linearity of the mean, it follows
that ȳ = ax̄+ b. For the standard deviation, we obtain

std(y) =

√√√√ 1

n

n∑
i=1

(yi − ȳ)2 (1.20)

=

√√√√ 1

n

n∑
i=1

(axi + b− ax̄− b)2 (1.21)

=
√
a2std(x) (1.22)

and for the covariance

cov(x, y) =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ) (1.23)

=
1

n

n∑
i=1

(xi − x̄)(axi + b− ax̄− b) (1.24)

= avar(x). (1.25)

Data Mining and Exploration, Spring 2021

1.1 Numerical Data Description 7

Figure 1.3: Correlation coefficients for different data sets. Figure from
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_

coefficient.

The correlation coefficient therefore is given by

ρ(x, y) =
avar(x)

std(x)
√
a2std(x)

=
a√
a2

=

{
1 if a > 0

−1 if a < 0
. (1.26)

Thus, for linear relationships, ρ is either 1 or -1 with 1 indicating positive linear
relationships and -1 indicating negative linear relationships.

If ρ = 0, then we refer to the variables as uncorrelated. It means 1
n

∑n
i=1(xiyi) =

x̄ȳ, that is, there is no linear relationship between the variables, but ρ = 0 does
not mean that the variables are statistically independent which is a much stronger
statement (see Figure 1.3 for uncorrelated but dependent examples).

For d attributes x1, . . . , xd with n observations for each attribute, the sample
covariance matrix is given by

cov(x1, . . . , xd) =

cov(x1, x1) cov(x1, x2) . . . cov(x1, xd)
cov(x2, x1) cov(x2, x2) . . . cov(x2, xd)

...
...

. . .
...

cov(xd, x1) cov(xd, x2) . . . cov(xd, xd)

 (1.27)

The matrix is symmetric because cov(xi, xj) = cov(xj , xi). Moreover, the diag-
onal elements of the sample covariance matrix are the sample variances because
cov(xi, xi) = var(xi).

The sample covariance matrix is an estimator of the covariance matrix

Cov[x] = E
[
(x− E[x])(x− E[x])>

]
(1.28)

where x denotes a d-dimensional random variable. This follows immediately from
the properties of the outer product ab> between two vectors a and b, see e.g.
Section A.2, because (x − E[x])(x − E[x])> is a d × d matrix where the (i, j)-
th element is (xi − E[xi])(xj − E[xj]). The covariance matrix is symmetric and,

Data Mining and Exploration, Spring 2021

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

8 First Steps in Exploratory Data Analysis

moreover, positive semi-definite, because by linearity of expectation,

w>Cov[x]w = E

w>(x− E[x])︸ ︷︷ ︸
scalar

(x− E[x])>w︸ ︷︷ ︸
scalar

 = E
[
(w>(x− E[x]))2

]
≥ 0.

(1.29)
It thus has an eigenvalue decomposition Cov[x] = UΛU>, where Λ is a diago-
nal matrix containing the eigenvalues, and U is an orthogonal matrix with the
eigenvectors as columns (see e.g. Appendix A for a linear algebra refresher).

The total variance of the d random variables xi is the sum of all eigenvalues:
with the definition of the trace of a matrix, see e.g. (A.6), we have

d∑
i=1

Var[xi] = trace(Cov[x]) (1.30)

= trace(UΛU>) (1.31)

(A.8)
= trace(ΛU>U) (1.32)

= trace(Λ) (1.33)

=
d∑
i=1

λi, (1.34)

where we have used that, for an orthogonal matrix U , U>U is the identity
matrix.

The linearly transformed random variable Ax + b has covariance matrix
ACov[x]A>. This is due to the linearity of expectation,

Cov[Ax+ b] = E
[
(Ax+ b− E[Ax+ b])(Ax+ b− E[Ax+ b])>

]
(1.35)

= E
[
(Ax− E[Ax])(Ax− E[Ax])>

]
(1.36)

= E
[
(A(x− E[x]))(A(x− E[x]))>

]
(1.37)

= E
[
A(x− E[x])(x− E[x])>A>

]
(1.38)

= AE
[
(x− E[x])(x− E[x])>

]
A> (1.39)

= ACov[x]A>. (1.40)

Following this scheme, we can transform the sample covariance matrix to a
sample correlation matrix in the following way:

ρ(x) = diag

(
1

std(x)

)
cov(x)diag

(
1

std(x)

)
(1.41)

where diag(x) denotes the diagonal matrix with x on the diagonal and 0 every-
where else. The correlation matrix has all ones on the diagonal.

A simple way to measure nonlinear relationships between observations of two
random variables x and y is to compute their covariance or correlation after
transforming them nonlinearly, i.e. to compute

ρ(g(x), g(y)) =
cov(g(x), g(y))

std(g(x))std(g(y))
(1.42)

Data Mining and Exploration, Spring 2021

1.1 Numerical Data Description 9

-4 -2 0 2 4

x

-2

0

2

4

6

8

10

y

(a) nonlinear functional relation

-4 -2 0 2 4

x

-3

-2

-1

0

1

2

3

y

(b) variance dependency

Figure 1.4: Measuring nonlinear relationships between two variables. The linear
correlation coefficient is small in both (a) and (b) The correlation of the absolute
values, however, captures the relation between x and y. (a) ρ(|x|, |y|) = 0.93, (b)
ρ(|x|, |y|) = 0.68.

where g denotes a nonlinear function. Different nonlinearities g can be used to
measure different properties of the dependencies. The absolute value, for example,
can be used to measure variance dependencies.

Figure 1.4 shows two examples. In Figure 1.4(a) there is a clear functional
relation between x and y but the (linear) correlation coefficient is −0.15, wrongly
indicating a negative correlation between x and y. Computing the correlation
between the absolute values |x| and |y|, however, yields a correlation coefficient
of 0.93. In Figure 1.4(b), the variance of y depends on the magnitude of x. The
linear correlation is practically zero while the absolute values have a correlation
coefficient of 0.68.

Similar to the median, we can also define robust correlation measures that do
not depend on the relative distances between samples. Such correlation measures
are known as rank correlation. One example is Kendall’s τ . To define this mea-
sure, we need the concept of concordant and discordant observations. A pair of
observations (xi, yi) and (xj , yj) with i 6= j is said to be concordant if the order of
elements is consistent, that is if both xi > xj and yi > yj or if both xi < xj and
yi < yj . The pair is said to be discordant if both xi > xj and yi < yj or if both
xi < xj and yi > yj . Visually, a line connecting two concordant observations
has a positive slope, while the slope is negative for discordant observations. If
xi = xj or yi = yj then the pair is said to be neither concordant nor discordant.
Kendall’s τ is given by

τ(x, y) =
nc(x, y)− nd(x, y)

n(n− 1)/2
(1.43)

where nc(x, y) denotes the total number of concordant pairs, nd(x, y) denotes the
total number of discordant pairs and n denotes the total number of (bivariate)
observations. Note that the denominator n(n−1)/2 is the number of (unordered)
pairs that you can form with n data points, so that Kendall’s τ is the difference
between the fraction of concordant and discordant pairs of observations. Figure
1.5 illustrates the calculation of Kendall’s τ .

Data Mining and Exploration, Spring 2021

10 First Steps in Exploratory Data Analysis

Concordant Discordant

Figure 1.5: Kendall’s τ is given by the normalised difference between the number
of concordant (green solid) and discordant (red dashed) data pairs. Concordant
data pairs are connected by lines with positive slope while discordant pairs are
connected by line with negative slope. For the example on the left, τ = 0, for the
example on the right, τ = (2− 1)/3 = 1/3.

Like Pearson’s correlation coefficient, Kendall’s τ takes values between -1 and
1. Unlike Pearson’s correlation coefficient, Kendall’s τ does not take relative
distances between neighbouring samples into account with -1 indicating that all
pairs are discordant and 1 indicating that all pairs are concordant. Like the
median, Kendall’s τ is robust to outliers.

1.2 Data Visualisation

The data visualisations that we are discussing in this section are means to describe
frequencies of occurrences. The various plots take different characteristics of the
data into account and, like numerical data descriptions, vary in their robustness.

Before visualising the data, it is useful to determine what values the data
attributes can take. If an attribute can take a finite or countably infinite number
of values (e.g. nationality, number of students in this course), then we call it dis-
crete. If, on the other hand, the attribute takes values on a continuum (e.g. time
point), then we call the attribute continuous. Which visualisation is appropriate
depends on the type of the data under consideration.

1.2.1 Bar Plot

A bar plot shows values characterising particular attributes of a population. This
is done by means of a collection of bars with different heights and labels denoting
the attributes. The heights of the bars are proportional to the values that they
represent, for instance the number of occurrences nj of the attribute vj in data
x1, . . . , xn.

When formally counting observations that have certain attributes, we will
often make use of the indicator function 1. For a given set A, this function is
defined as

1A(ξ) =

{
1 if ξ ∈ A
0 otherwise

(1.44)

Data Mining and Exploration, Spring 2021

1.2 Data Visualisation 11

Q1 Q3

IQR

Median

Q3 + 1.5 × IQRQ1 1.5 × IQR

0.6745σ 0.6745σ 2.698σ2.698σ

50%24.65% 24.65%

68.27% 15.73%15.73%

4σ 3σ 2σ 1σ 0σ 1σ 3σ2σ 4σ

4σ 3σ 2σ 1σ 0σ 1σ 3σ2σ 4σ

4σ 3σ 2σ 1σ 0σ 1σ 3σ2σ 4σ

Figure 1.6: Box plot and comparison to the Gaussian probability density function.
Figure from https://en.wikipedia.org/wiki/Box_plot

We can compute nj by having A contain just one element, that is A = {vj}. The
condition ξ ∈ A then simplifies to ξ = a and the number of occurences nj is given
by

nj =
n∑
i=1

1{vj}(xi). (1.45)

Note that
∑k

i=1 nj = n if {x1, . . . , xn} ⊆ {v1, . . . , vk}. When comparing popula-
tions with different number of samples, it is more useful to show relative frequen-
cies fj =

nj

n instead of number of observations nj .

Like the mode, the bar plot is always applicable and meaningful even if the
data attributes are just categorical and unordered.

1.2.2 Box Plot

The box plot or box-and-whiskers-plot compactly shows the quartiles using a
box and lines (typically vertically arranged). The box is drawn from Q1 to
Q3, illustrating the IQR with a crossing line at the median. From this IQR
box, two lines (the “whiskers”) extend to indicate the spread of the data. The
length of the lines is typically a multiple of the IQR, with a factor of 1.5 being
a common default value, see Figure 1.6 for an example. Note, however, that
different software packages may implement different defaults. Observations that
fall beyond the limits set by the whiskers are considered outliers (see Section 1.3.2)
and sometimes drawn individually as separate points. Since the box plot is based
on robust measures, it is itself very robust.

Data Mining and Exploration, Spring 2021

https://en.wikipedia.org/wiki/Box_plot

12 First Steps in Exploratory Data Analysis

1.2.3 Scatter Plot

The scatter plot is one of the most common and useful plots to visualise the distri-
bution of two random variables. It shows the observations as symbols (typically
dots, circles, triangles, . . .) in a 2-dimensional coordinate system. Each symbol
represents one data point. Colouring the symbols or changing their size or shape
enables visualisation of further dimensions or class labels. Figure 1.4 shows two
examples of scatter plots.

1.2.4 Histogram

A histogram can be thought of as a continuous extension of the bar plot where
the (not necessarily complete) range of the observations is divided into k non-
overlapping and successive bins B1, . . . , Bk. We then count the number of samples
falling into each bin Bj using the same procedure as for the bar plot:

nj =
n∑
i=1

1Bj (xi) (1.46)

Optionally, we can normalise the nj by n to show the relative frequencies. The
bins are often chosen to have equal bin width h. For a starting value L, the sets
Bj are then given by:

B1 = [L,L+ h)

B2 = [L+ h, L+ 2h)

...

Bk−1 = [L+ (k − 2)h, L+ (k − 1)h)

Bk = [L+ (k − 1)h, L+ kh].

The starting value L and the value L + kh correspond to the lower and upper
bound, respectively, of data visualised in the histogram. The starting value L,
the bin size h and the number of bins are parameters that need to be chosen. For
L ≤ min(x1, . . . , xn) and k such that L+kh ≥ max(x1, . . . , xn) the whole dataset
is visualised. Bj is centred at L+ jh−h/2 and the corresponding bar showing nj
is located at this point on the x-axis. Figure 1.7(a) shows an example. We can
see that different starting values L may lead to differently looking histograms.

For two dimensions, the bins can be 2-dimensional: B1,1 = [L,L+h)× [L,L+
h), B1,2 = [L,L + h) × [L + h, L + 2h), B2,1 = [L + h, L + 2h) × [L,L + h),
The bars can then be represented as a 2-dimensional surface plot.

1.2.5 Kernel Density Plot

Oftentimes, we know that the distribution underlying the observations is continu-
ous and smooth. By construction, a histogram uses a discrete number of bins and
will generally show abrupt changes from one bin to the next. Histograms, there-
fore, will generally misrepresent distributions that are continuous and smooth.

To remedy this shortcoming, we can try to estimate the density as a continu-
ous function and then plot our estimate. To estimate the probability density, we

Data Mining and Exploration, Spring 2021

1.2 Data Visualisation 13

x

1 2 3 4 5 6 7 8

fr
e

q
u

e
n

c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) L = mini(xi)

x

1 2 3 4 5 6 7 8

fr
e
q

u
e

n
c
y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) L = mini(xi) − 0.3

Figure 1.7: Describing data by histograms. The edges of the bars correspond to
the edges of the bins used for the histogram. (a) and (b) show histograms with
different starting vales L.

can use a kernel density estimate:

p̂(x) =
1

n

n∑
i=1

Kh(x− xi) (1.47)

where Kh is a non-negative function called the (scaled) kernel. To make sure
that we obtain a density (which is normalised to one), Kh needs to integrate to
one:

∫
Kh(ξ)dξ = 1. For typical kernel functions, the parameter h is called the

bandwidth and determines the smoothness of the estimate.
An example of Kh is the boxcar kernel

Kh(ξ) =
1

h
1[−h/2,h/2](ξ), (1.48)

which is a rectangular function located at zero. The bandwidth parameter deter-
mines the width of the rectangle and is inversely proportional to its height. The
kernel density estimate in conjunction with the boxcar kernel counts the number
of observations in the vicinity of each argument x and normalises that count with
the bandwidth h.

When using the boxcar kernel, we stop counting observations as soon as they
are further than h/2 away from x. Instead of this binary weight assignment, it
is often more reasonable to assign to each data point a weight that decreases
smoothly with the distance from the argument x. A popular choice is the Gaus-
sian kernel

Kh(ξ) =
1√

2πh2
exp

(
− ξ2

2h2

)
. (1.49)

In these cases, the bandwidth parameter h is a free parameter that needs to be
chosen. Other kernels are plotted in Figure 1.8. Figure 1.9 shows the densi-
ties estimated by rescaling the histogram, with the boxcar kernel, and with the
Gaussian kernel.

Like the histogram, the kernel density plot can be readily extended to two
dimensions using a surface plot and a 2-dimensional kernel and density estimator.

Data Mining and Exploration, Spring 2021

14 First Steps in Exploratory Data Analysis

Figure 1.8: Kernels used in kernel density estimation. Figure from https:

//en.wikipedia.org/wiki/Kernel_(statistics)

.

x

1 2 3 4 5 6 7 8

e
s
ti
m

a
te

d
 p

ro
b
a
b
ili

ty
 d

e
n
s
it
y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(a) Scaled histogram

x

1 2 3 4 5 6 7 8

e
s
ti
m

a
te

d
 p

ro
b
a
b
ili

ty
 d

e
n
s
it
y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(b) Boxcar kernel

x

1 2 3 4 5 6 7 8

e
s
ti
m

a
te

d
 p

ro
b
a
b
ili

ty
 d

e
n
s
it
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) Gaussian kernel

Figure 1.9: Estimating the probability density function from (a) the histogram
or (b-c) via kernel density estimation.

Data Mining and Exploration, Spring 2021

https://en.wikipedia.org/wiki/Kernel_(statistics)
https://en.wikipedia.org/wiki/Kernel_(statistics)

1.3 Data Pre-Processing 15

Figure 1.10: Example violin plot. Figure from https://en.wikipedia.org/

wiki/violin_plot

1.2.6 Violin Plot

The Violin plot is a combination of a box plot and a rotated/reflected kernel
density plot that is attached to both sides of the box plot. It describes robust
(box plot) as well as non-robust but more informative (kernel density plot) aspects
of the samples in a single plot. An example is plotted in Figure 1.10.

1.3 Data Pre-Processing

Oftentimes, it is useful to apply various transformations to the data to prepare
it for further analysis. Typical pre-processing transformations include normali-
sation and outlier removal.

1.3.1 Standardisation

Data standardisation refers to data transformations that make variables compa-
rable by dismissing certain characteristics. It classically refers to normalising the
data to have zero (sample) mean and unit (sample) variance. We have seen this
operation already in the definition of skewness and kurtosis. It can help to com-
pare populations with different means and variances. It may, however, also refer
to other kinds of transformations to make all variables comparable, for exam-
ple, transforming the variables to be in the unit interval [0, 1]. Common further
transformations that are being used are removing the average value of each single
data vector, re-scaling the vector to unit norm, or computing the logarithm of its
values. The transformations are often problem dependent.

Normalising the data to have zero sample mean and unit sample variance is
a linear transformation. We will now express this transformation in terms of
matrix operations.

Data Mining and Exploration, Spring 2021

https://en.wikipedia.org/wiki/violin_plot
https://en.wikipedia.org/wiki/violin_plot

16 First Steps in Exploratory Data Analysis

Centring Matrix

We consider n observations x1, . . . ,xn, where each observation is a d-dimensional
vector. We can put these observations into a d × n matrix X = (x1, . . . ,xn).
The sample mean now is a d-dimensional vector x̄ = (x̄1, . . . , x̄d)

> with elements

x̄i =
1

n

n∑
j=1

(X)ij , (1.50)

where (X)ij denotes the (ij)-th element of X. Subtracting this mean from each
observation (i.e. each column vector in X) results in new vectors

x̃i = xi − x̄ (1.51)

which have zero sample mean. These vectors give rise to another d× n matrix

X̃ = (x̃1, . . . , x̃n) = (x1 − x̄, . . . ,xn − x̄) = X − (x̄, . . . , x̄︸ ︷︷ ︸
n times

) (1.52)

We will now show that this sample mean removal can also be performed using
a matrix multiplication

X̃ = XCn, (1.53)

where Cn denotes the centring matrix

Cn = In −
1

n
1n1

>
n , (1.54)

In is the n× n identity matrix and 1n = (1 1 . . . 1)> is a vector of ones.
To see this, we write the sample mean as a matrix-vector product

x̄ =
1

n

n∑
i=1

xi =
1

n
X1n (1.55)

The matrix that contains the sample mean vector n-times (x̄, . . . , x̄) can be
written as an outer product

x̄1>n =

x̄1

x̄2
...
x̄d

 (1 1 . . . 1︸ ︷︷ ︸
n times

) =

x̄1 x̄1 . . . x̄1

x̄2 x̄2 . . . x̄2
...
x̄d x̄d . . . x̄d

 = (x̄, . . . , x̄︸ ︷︷ ︸
n times

). (1.56)

Together with (1.55), we can represent this matrix as

(x̄, . . . , x̄) = X
1

n
1n1

>
n (1.57)

Plugging this into (1.52), we can show (1.53):

X̃ = X − (x̄, . . . , x̄) (1.58)

= X −X 1

n
1n1

>
n (1.59)

= X

(
In −

1

n
1n1

>
n

)
(1.60)

= XCn. (1.61)

Data Mining and Exploration, Spring 2021

1.3 Data Pre-Processing 17

As we have seen, multiplying with the centring matrix from the right removes
the sample mean of each row. Removing the sample mean again does not change
anything. For this reason, the centring matrix is idempotent, that is CnCn = Cn.

Multiplying the centring matrix from the left removes the sample mean of
each column. For a vector v = (v1 v2 . . . vn)> it holds

Cnv =

v1 − v̄
v2 − v̄

...
vn − v̄

 (1.62)

The centring matrix is thus a projection matrix that projects vectors on the space
orthogonal to 1n.

The centring matrix is not computationally useful for actually removing the
mean, but it is useful in analytical calculations as we will see in later chapters.

Scaling to Unit Variance

We can use the centring matrix to express the sample covariance matrix (1.27)
in the following way:

cov(x) =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)> (1.63)

=
1

n

n∑
i=1

x̃ix̃
>
i (1.64)

=
1

n
X̃X̃> (1.65)

=
1

n
XCnX

> (1.66)

Recall that we can transform the sample covariance matrix to the sample corre-
lation matrix using (1.41). The corresponding data transformation follows from
(1.40) and is the multiplication from the left with the matrix that contains the
inverse of the sample standard deviations on the diagonal and zeros off-diagonal,
that is

zi = diag

(
1

std(x)

)
x̃i. (1.67)

where x̃i denotes the centred data. The elements of the zi now have zero sample
mean and unit sample variance. Note, however, that the elements may still be
correlated.

1.3.2 Outlier Detection and Removal

An outlier is an observation that seems unusual compared to others. This is a
vague definition, which reflects the various possible causes for outliers.

An outlier can be due to an error in the data acquisition stage, for instance
because a measurement device did not work properly. An observation may, how-
ever, also appear unusual because it does not conform to the current assumptions

Data Mining and Exploration, Spring 2021

18 First Steps in Exploratory Data Analysis

that are made about the data. In the former case, we may omit the corrupted
observations from the analysis, while in the latter case, the observations contain
valuable information that should not be discarded.

Some outliers can be spotted by the methods above for describing univariate
or bivariate data. If there is a strong difference between the mean and median,
for example, the cause may be an outlier. Scatter plots, quantiles, histograms
and in particular violin plots further enable one to spot outliers.

An additional way to detect outliers is to use Tukey’s fences which define an
interval for usual observations. The interval essentially corresponds to what is
shown with the whiskers in box plots. Indeed, Tukey’s fences are given by

[Q1 − k(Q3 −Q1), Q3 + k(Q3 −Q1)] = [Q1 − kIQR(x), Q3 + kIQR(x)] (1.68)

for k ≥ 0, and most commonly, k = 1.5. Observations outside of this interval are
often labelled as outliers, in particular in box plots.

References

[1] T.-H. Kim and H. White. “On more robust estimation of skewness and kur-
tosis”. In: Finance Research Letters 1.1 (2004), pp. 56–73.

Data Mining and Exploration, Spring 2021

Chapter 2

Principal Component Analysis

This chapter presents several equivalent views on principal component analysis
(PCA). The three main themes are finding directions in the data space along
which the data are maximally variable, finding lower-dimensional yet accurate
representations of the data, and formulating a probabilistic model of PCA. We
assume that the data have been centred, i.e. that the sample mean has been
subtracted from the data points xi, and that the corresponding random vector x
has zero mean.

2.1 PCA by Variance Maximisation

We first explain how to find the principal component direction sequentially and
then formulate the equivalent simultaneous maximisation problem.

2.1.1 First Principal Component Direction

The first principal component direction is the unit vector w1 for which the pro-
jected data w>1 xi are maximally variable, where variability is measured by the
sample variance. Equivalently, we can work with the random vector x and look
for the direction w1 for which the variance of z1 = w>1 x is maximal.

The variance Var[z1] can be expressed in terms of the covariance matrix Σ of
x,

Var[z1] = Var[w>1 x] = w>1 Σw1, (2.1)

which follows from (1.40) with A = w>1 . The first principal component direction
is thus the solution to the following optimisation problem:

maximise
w1

w>1 Σw1

subject to ||w1|| = 1
(2.2)

The eigenvalue decomposition of Σ allows us to find a solution in closed form.
Let

Σ = UΛU>, (2.3)

where U is an orthogonal matrix and where Λ is diagonal with eigenvalues λi ≥ 0
(see Section A.8). We further assume that λ1 ≥ λ2 ≥ · · · ≥ λd. As the columns

20 Principal Component Analysis

ui of U form an orthogonal basis, we can express w1 as

w1 =

d∑
i=1

aiui = Ua, (2.4)

where a = (a1, . . . , ad)
>. The quadratic form w>1 Σw1 can thus be written as

w>1 Σw1 = a>U>U︸ ︷︷ ︸
Id

ΛU>U︸ ︷︷ ︸
Id

a = a>Λa =

d∑
i=1

a2
iλi, (2.5)

and the unit norm constraint on w1 becomes

||w1||2 = w>1 w1 = a>U>Ua = a>a =

d∑
i=1

a2
i

!
= 1 (2.6)

An equivalent formulation of the optimisation problem in (2.2) is thus

maximise
a1,...,ad

d∑
i=1

a2
iλi

subject to
d∑
i=1

a2
i = 1

(2.7)

As λ1 ≥ λi, i = 2, . . . , d, setting a1 to one and the remaining ai to zero is a
solution to the optimisation problem. This is the unique solution if λ1 is the
largest eigenvalue. But if, for example, λ1 = λ2, the solution is not unique any
more: any a1 and a2 with a2

1 + a2
2 = 1 satisfy the constraint and yield the same

objective. Assuming from now on that λ1 > λi, i = 2, . . . , d, the unique w1 that
solves the optimisation problem in (2.2) is

w1 = U

1
0
...
0

 = u1. (2.8)

The corresponding value of the objective w>1 Σw1 is λ1.
The first principal component direction w1 is thus given by the eigenvector of

the covariance matrix of x that has the largest eigenvalue. The random variable
z1 = w>1 x is called the first principal component of x.

The variance of z1 is equal to λ1—the largest eigenvalue of Σ and the maximal
value of the objective in (2.2). We say that λ1 is the variance of x explained by the
first principal component (direction). Since x is assumed centred, the expected
value of z1 is zero,

E[z1] = E[w>1 x] = w>1 E[x]︸︷︷︸
0

= 0. (2.9)

In practice, we work with the centred data points xi. The projections w>1 xi, i =
1, . . . , n are often called the first principal components too, but also, more pre-
cisely, the first principal component scores. Collecting the centred data points
into the d× n data matrix X,

X = (x1, . . . ,xn), (2.10)

Data Mining and Exploration, Spring 2021

2.1 PCA by Variance Maximisation 21

the (row) vector z>1 with all first principal component scores is given by w>1 X.

2.1.2 Subsequent Principal Component Directions

Given w1, the next principal component direction w2 is chosen so that it max-
imises the variance of the projection w>2 x and so that it reveals something “new”
in the data, i.e. something that w1 has not uncovered. This puts a constraint on
w2, and in PCA, the constraint is implemented by requiring thatw2 is orthogonal
to w1.

The second principal component direction is hence defined as the solution to
the optimisation problem:

maximise
w2

w>2 Σw2

subject to ||w2|| = 1

w>2 w1 = 0

(2.11)

As before, we decompose Σ as UΛU> and write w2 as w2 = Ub. Since w1 = u1,
w>2 w1 equals

b>U>u1 = b>

1
0
...

 = b1 (2.12)

and the constraint w>2 w1 = 0 becomes the constraint b1 = 0. The optimisation
problem in (2.11) can thus be equally expressed as:

maximise
b1,...,bd

d∑
i=1

b2iλi

subject to
d∑
i=1

b2i = 1

b1 = 0

(2.13)

We can insert the constraint b1 = 0 directly into the other equations to obtain

maximise
b2,...,bd

d∑
i=2

b2iλi

subject to
d∑
i=2

b2i = 1

(2.14)

The optimisation problem is structurally the same as in (2.7); now we just opti-
mise over b2, . . . , bd. As λ2 ≥ λi, i = 3, . . . d, an optimal vector b is (0, 1, 0, . . . , 0)>

and hence

w2 = U

0
1
0
...
0

 = u2 (2.15)

Data Mining and Exploration, Spring 2021

22 Principal Component Analysis

is a solution to the optimisation problem. Furthermore, the value of w>2 Σw2

is λ2. As discussed for the first principal component, this solution is unique if
λ2 > λi, i = 3, . . . d, which we here assume to be the case.

The second principal component direction w2 is thus given by the eigenvector
of the covariance matrix of x that has the second largest eigenvalue. Analogue
to the first principal component z1, the second principal component is z2 = w>2 x
with mean E[z2] = 0 and variance Var[z2] = λ2. The principal components are
uncorrelated:

E [z1z2] = E
[
w>1 xw

>
2 x
]

(2.16)

= E
[
w>1 xx

>w2

]
= w>1 E

[
xx>

]
w2 (2.17)

= w>1 Σw2 (2.18)

= u>1 UΛU>u2 (2.19)

=
(
1 0 0 · · ·

)

λ1

λ2

. . .

λd

0
1
0
...

 (2.20)

=
(
λ1 0 0 · · ·

)

0
1
0
...

 (2.21)

= 0. (2.22)

The procedure that we used to obtain w2 given w1 can be iterated to obtain
further principal component directions. Assume that we have already computed
w1, . . . ,wm−1. The m-th principal component direction wm is then defined as
the solution to:

maximise
wm

w>mΣwm

subject to ||wm|| = 1

w>mwi = 0 i = 1, . . . ,m− 1

(2.23)

Arguing as before, the m-th principal component direction wm is given by eigen-
vector um that corresponds to the m-th largest eigenvalue of Σ (assuming that
there are no ties with other eigenvalues). The random variable zm = w>mx is
called the m-th principal component, its variance Var[zm] is λm, it is of zero
mean (because x is zero mean), and all principal components are uncorrelated.
The w>mxi, i = 1, . . . , n, are the m-th principal component scores.

The total variance of the zm, m = 1, . . . , k, is said to be the variance explained
by the k principal components. It equals

k∑
m=1

Var[zm] =

k∑
m=1

λm. (2.24)

The variance explained by the k principal components is often reported relative
to the sum of the variances of the random variables xi that make up the random

Data Mining and Exploration, Spring 2021

2.2 PCA by Minimisation of Approximation Error 23

vector x. The resulting number is the “fraction of variance explained”. With
(1.34), the total variance of x is

d∑
i=1

Var[xi] =

d∑
i=1

λi, (2.25)

so that

fraction of variance explained =

∑k
i=1 λi∑d
i=1 λi

. (2.26)

The fraction of variance explained is a useful number to compute for assessing
how much of the variability in the data is captured by the k principal components.

2.1.3 Simultaneous Variance Maximisation

In the previous section, the k principal component directions w1, . . . ,wk were
determined in a sequential manner, each time maximising the variance of each
projection. Instead of the sequential approach, we can also determine all di-
rections concurrently by maximising the total variance of all projections, i.e. by
solving the optimisation problem:

maximise
w1,...,wk

k∑
i=1

w>i Σwi

subject to ||wi|| = 1 i = 1, . . . , k

w>i wj = 0 i 6= j

(2.27)

It turns out that the optimal w1, . . .wk from the sequential approach, i.e. the
eigenvectors u1, . . . ,uk, are also solving the joint optimisation problem in (2.27),
so that the maximal variance of all projections is

∑k
i=1 λk. This result may be

intuitively understandable, but there is a subtle technical point: The sequential
approach corresponds to solving the optimisation problem in (2.27) in a greedy
manner, and greedy algorithms are generally not guaranteed to yield the optimal
solution. Nevertheless, one can show that simultaneous and sequential variance
maximisation yield the same solution (B.1, optional reading).

2.2 PCA by Minimisation of Approximation Error

A set of k orthonormal vectors w1, . . . ,wk of dimension d spans a k-dimensional
subspace of Rd denoted by span(w1, . . . ,wk), see Section A.5. Moreover, the
matrix P ,

P =

k∑
i=1

wiw
>
i = WkW

>
k , Wk = (w1, . . . ,wk), (2.28)

projects any vector onto said subspace. This means that we can decompose our
data points xi into elements x̂i = Pxi that belong to span(w1, . . . ,wk) and
“residual” vectors orthogonal to it (see Figure 2.1 and Section A.6). The projec-
tions x̂i are lower dimensional approximations of the xi that can be represented

Data Mining and Exploration, Spring 2021

24 Principal Component Analysis

Figure 2.1: Orthogonal projection of x onto the subspace spanned by the two
orthonormal vectors w1 and w2. The projection Px can be written as a linear
combination of w1 and w2, and the residual x−Px is orthogonal to both vectors.

by the k coordinates w>1 xi, . . . ,w
>
k xi. Equivalently, the random vector x can be

approximated by x̂ = Px =
∑k

i=1wiw
>
i x.

We now ask which subspace yields the approximations with the smallest error
on average? Or equivalently, which subspace yields the smallest expected approx-
imation error? The question can be formulated as the optimisation problem:

minimise
w1,...,wk

E
∣∣∣∣x− k∑

i=1

wiw
>
i x
∣∣∣∣2

subject to ||wi|| = 1 i = 1, . . . , k

w>i wj = 0 i 6= j

(2.29)

One can show that the optimisation problem is equivalent to the optimisation
problem in (2.27), so that the optimal wi are the first k eigenvectors ui of the
covariance matrix of x, where “first k eigenvectors” means the eigenvectors with
the k largest eigenvalues (B.2, optional reading). For this to make sense, it is
assumed that the k-th eigenvalue is larger than the (k + 1)-th eigenvalue.

In other words, the optimal k-dimensional subspace is spanned by u1, . . . ,uk,
the optimal projection matrix is P = UkU

>
k , and the optimal lower dimensional

representation of x is x̂ = Px. Since

x̂ = UkU
>
k x =

k∑
i=1

uiu
>
i x =

k∑
i=1

uizi (2.30)

the i-th principal component zi = u>i x is the i-th coordinate of x̂ when repre-
sented in span(u1, . . . ,uk).

We now compute the approximation error obtained by the optimal solution
x̂. We have

E
∣∣∣∣x− x̂∣∣∣∣2 = E[x>x]− 2E[x>x̂] + E[x̂>x̂] (2.31)

From Section 2.1.2, and (1.34), we know that E[x>x] = E ||x||2 =
∑d

i=1 λi.
Moreover, the ui are orthonormal vectors, so that the squared norm of x̂ equals

Data Mining and Exploration, Spring 2021

2.3 PCA by Low Rank Matrix Approximation 25

∑k
i=1 z

2
i . Since we have assumed that the random variables have zero mean,

previous results yield E[z2
i] = Var[zi] = λi. With the expression for x̂ in (2.30),

we further have

E[x>x̂] = E[x>
k∑
i=1

uizi] (2.32)

=
k∑
i=1

E[x>uizi] (2.33)

=
k∑
i=1

E[z2
i]. (2.34)

The smallest expected approximation error when orthogonally projecting x onto
a k dimensional subspace thus equals

E
∣∣∣∣x− x̂∣∣∣∣2 =

d∑
i=1

λi − 2
k∑
i=1

λi +
k∑
i=1

λi (2.35)

=

d∑
i=k+1

λi, (2.36)

which is the sum of the eigenvalues whose eigenvectors were omitted from the
optimal subspace. Computing the relative approximation error highlights the
connection between minimising approximation error and maximising the variance
explained by the principal components,

E ||x− x̂||2

E ||x||2
= 1−

∑k
i=1 λi∑d
i=1 λi

= 1− fraction of variance explained. (2.37)

The fraction of variance explained by a principal component (direction) thus
equals the relative reduction in approximation error that is achieved by including
it into the subspace.

2.3 PCA by Low Rank Matrix Approximation

This section uses the theory of low rank matrix approximation to provide a com-
plementary view on the PCA principles of variance maximisation and minimisa-
tion of approximation error.

2.3.1 Approximating the Data Matrix

We will here see that the principal component directions and scores together yield
the best low rank approximation of the data matrix, and that the PC directions
and scores can be computed by a singular value decomposition (SVD).

Let X be the d × n data matrix that contains the centred data points xi in
its columns,

X = (x1, . . . ,xn). (2.38)

Data Mining and Exploration, Spring 2021

26 Principal Component Analysis

We can express X via its singular value decomposition as

X = USV >. (2.39)

The d × d matrix U and the n × n matrix V are orthonormal with the vectors
ui ∈ Rd and vi ∈ Rn in their columns. The ui are called the left singular vectors
while the vi are called the right singular vectors. The matrix S is d×n and zero
everywhere but in the first r diagonal elements,

S =

s1

. . . 0
sr

0 0

 . (2.40)

The si are the singular values. They are positive and assumed ordered from large
to small. The number r ≤ min(d, n) is the rank of X. The matrix X can further
be written as

X =

r∑
i=1

siuiv
>
i . (2.41)

Section A.7 provides further background on the SVD.

Assume we would like to approximate X by a matrix X̂ of rank k < r.
Judging the accuracy of the approximation by the sum of squared differences in
the individual matrix elements, we can determine X̂ by solving the optimisation
problem

minimise
M

∑
ij

((X)ij − (M)ij)
2

subject to rank(M) = k

(2.42)

The sum of squared differences
∑

ij((X)ij−(M)ij)
2 is called the Frobenius norm

between X and M and typically denoted by ||X −M ||F .

It is known from linear algebra that the optimal low rank approximation is
given by X̂,

X̂ =
k∑
i=1

siuiv
>
i , (2.43)

and that the corresponding approximation error is

||X − X̂||F =
r∑

i=k+1

s2
i , (2.44)

see (A.63) and (A.65) in Section A.10. The solution to the optimisation problem
is thus rather simple: We just keep the first k terms in (2.41).

How does this relate to principal component analysis? It turns out that

• the left singular vectors ui are the eigenvectors of the (estimated) covariance
matrix and hence equal to the principal component directions,

Data Mining and Exploration, Spring 2021

2.3 PCA by Low Rank Matrix Approximation 27

• the squared singular values s2
i are related to the eigenvalues λi of the co-

variance matrix by

λi =
s2
i

n
, (2.45)

• and that the principal component scores z>i = u>i X for principal compo-
nent direction i are equal to the i-th right singular vector after scaling,

z>i = siv
>
i . (2.46)

We can thus write the approximate data matrix X̂ in (2.43) as

X̂ =
k∑
i=1

uiz
>
i , (2.47)

which underlines how the k principal component directions ui and corresponding
principal component scores zi together approximately represent the data X.

The stated connections can be seen as follows: As we assume that the data
points are centred, an estimate of the covariance matrix is given by the sample
covariance matrix,

Σ ≈ 1

n

n∑
i=1

xix
>
i =

1

n
XX>. (2.48)

Using Σ to denote both the covariance and the sample covariance matrix, we
have

Σ =
1

n
USV >(V S>U>) = U

(
1

n
SS>

)
U> (2.49)

so that the eigenvectors of Σ are the left singular vectors ui of the data matrix
X with eigenvalues λi as in (2.45). The i-th principal component scores were
defined as the projections w>i xj of the data points xj onto the i-th principal
component direction wi. Collecting all scores into the 1 × n row vector z>i , we
have

z>i = w>i X = u>i X = u>i USV
> = u>i

r∑
j=1

ujsjv
>
j = siv

>
i . (2.50)

which means that the i-th principal component scores are given by the i-th right
singular vector when multiplied with its singular value si as claimed in (2.46).

2.3.2 Approximating the Sample Covariance Matrix

Approximating the data matrix with a matrix of lower rank yielded the first k
principal component directions and scores. We here show that the first principal
component directions can also be obtained by a low rank approximation of the
sample covariance matrix. This provides a complementary view to PCA, in that
finding directions in the data space with maximal variance is also maximally pre-
serving the variance structure of the original data. This approach does, however,
not directly yield principal component scores.

Data Mining and Exploration, Spring 2021

28 Principal Component Analysis

The optimisation problem that we aim to solve is:

minimise
M

||Σ−M ||F

subject to rank(M) = k

M> = M

(2.51)

Much like the first k components of the SVD are solving the optimisation problem
in (2.42), results from linear algebra tell us that the optimal low rank approxi-
mation of Σ is given by the first k components of its eigenvalue decomposition
UΛU>, i.e. by

∑k
i=1 λiuiu

>
i , see (A.66) in Section A.10.

2.3.3 Approximating the Gram Matrix

The Gram matrix is defined as the n× n matrix G,

G = X>X. (2.52)

Its (ij)-th element (G)ij is the inner product between xi and xj . The matrix is
positive semidefinite, i.e. its eigenvalues are non-negative. It is here shown that
the first principal component scores provide an optimal low rank approximation
of G. Hence, finding coordinates that minimise the average approximation error
of the data points xi is also maximally preserving the inner product structure
between them.

With the singular value decomposition of X in (2.39), the Gram matrix has
the following eigenvalue decomposition

G = (USV >)>(USV >) = (V S>U>)(USV >) = V S>SV > = V Λ̃V >

(2.53)
i.e. its eigenvectors are the right-singular vectors vi ofX, and the diagonal matrix
Λ̃ = S>S contains the eigenvalues s2

i ordered from large to small.

Like for the sample covariance matrix, we can determine the best rank k
approximation of the Gram matrix G. It is given by Ĝ,

Ĝ =
k∑
i=1

vis
2
iv
>
i . (2.54)

In (2.46), we have seen that zi = sivi is the column vector with all i-th principal
component scores. We thus have

Ĝ =
k∑
i=1

ziz
>
i , (2.55)

which shows that the k principal scores together maximally preserve the inner
product structure of the data.

Denote by Λ̃k the diagonal matrix with the top k eigenvalues of G, and by
Vk,

Vk = (v1, . . . ,vk) (2.56)

Data Mining and Exploration, Spring 2021

2.4 Probabilistic PCA 29

the matrix with the corresponding eigenvectors. The k × n matrix with the
principal component scores as its rows is then

Z =

√
Λ̃kV

>
k . (2.57)

We have the square root because the singular values si are the square root of
the eigenvalues of G. Hence, we can compute the principal component scores
directly from the Gram matrix of the centred data, without first computing the
principal component directions. This can be done without knowing X as long as
G is available.

2.4 Probabilistic PCA

In this section, we formulate a parametric probabilistic model of the data such
that its maximum likelihoood estimate corresponds to PCA. This description
connects PCA to the powerful probabilistic modelling approach to data analysis.

2.4.1 Probabilistic Model

In Section 2.2, we saw that PCA can be understood as error minimisation in a sub-
space approximation. Building on this view, we will now define a k-dimensional
latent variable z corresponding to a variable living in the principal component
subspace (Tipping and Bishop, 1999). We assume that the elements of z are
statistically independent and standard normal distributed, i.e.

p(z) = N (z|0, I) (2.58)

where

N (x|µ,Σ) =
1√

(2π)d|det(Σ)|
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
(2.59)

denotes the multivariate normal distribution with mean vector µ and covariance
matrix Σ. Here, det(Σ) denotes the determinant of Σ.

We further assume that our observable data are generated in the following
way:

x = Wz + µ+ ε, (2.60)

whereW denotes a d×k matrix, µ denotes a d-dimensional constant mean vector
and ε denotes a d-dimensional zero-mean Gaussian-distributed noise variable with
covariance σ2I and σ2 denoting a scalar. The quantities W , µ and σ2 are the
parameters of the model. The generative process of this model is illustrated in
Figure 2.2, left and centre panels.

2.4.2 Joint, Conditional and Observation Distributions

For constant z, the term Wz + µ is constant which means that our data x
conditioned on the latent variable z are also multivariate normal distributed:

p(x|z) = N (x|Wz + µ, σ2I). (2.61)

Data Mining and Exploration, Spring 2021

30 Principal Component Analysis

Figure 2.2: Illustration of the model of probabilistic PCA for a 2-dimensional
data space and a 1-dimensional latent space. Left: Distribution of latent variable.
Centre: An observation x is drawn by first drawing a latent variable zi and then
adding independent Gaussian noise with mean µ+ziw and covariance σ2I (green
contour lines). Right: Contour lines of the density of the marginal distribution
p(x). Adapted from (Bishop, 2006, Figure 12.9).

Now, consider the joint distribution p(z,x) = p(x|z)p(z):

p(z,x) =
1

const
exp

(
−1

2

[
(x−Wz − µ)>

(
1

σ2
I

)
(x−Wz − µ) + z>z

])
,

(2.62)
where “const” denotes terms that are independent of x and z. This is again a
multivariate normal distribution over x and z. We will now determine the mean
and covariance matrix of this joint distribution.

For a multivariate normal distribution, the term in the exponential function
generally has the form

− 1

2
(x− µ)>Σ−1(x− µ) = −1

2
x>Σ−1x+ x>Σ−1µ+ const, (2.63)

where here “const” denotes terms that are independent of x. The second order
terms of the form x>Σ−1x contain the inverse of the covariance matrix and the
linear terms x>Σ−1µ contain the mean. Thus, if we encounter a term of the
form

− 1

2
x>Ax+ x>ξ + const (2.64)

then, by matching terms, we can obtain the covariance matrix by taking the
inverse of the second order coefficient matrix

Σ = A−1 (2.65)

and we can obtain the mean by multiplying the linear coefficient vector with the
covariance matrix

µ = Σξ. (2.66)

To obtain the covariance matrix of the joint distribution p(z,x), we treat the
tuple (z,x) as a single vector variable and consider the second order terms in the
exponential of (2.62):

− 1

2

[
z>
(
I +W> 1

σ2
W

)
z + x>

1

σ2
x− x> 1

σ2
Wz − z>W> 1

σ2
x

]
= −1

2

(
z
x

)>(
I +W> 1

σ2W −W> 1
σ2

− 1
σ2W

1
σ2 I

)(
z
x

)
(2.67)

Data Mining and Exploration, Spring 2021

2.4 Probabilistic PCA 31

By means of block matrix inversion (A.22), we obtain the covariance matrix of
p(z,x):

Cov

[(
z
x

)]
=

(
I +W> 1

σ2W −W> 1
σ2

− 1
σ2W

1
σ2 I

)−1

=

(
I W>

W WW> + σ2I

)
. (2.68)

To find the mean of the joint distribution p(z,x), we consider the linear terms
in the exponential of (2.62):

− z>W> 1

σ2
µ+ x>

1

σ2
µ =

(
z
x

)>(−W> 1
σ2µ

1
σ2µ

)
. (2.69)

With (2.66), we obtain the mean as

E
[(
z
x

)]
=

(
I W>

W σ2I +WW>

)(
−W> 1

σ2µ
1
σ2µ

)
=

(
0
µ

)
. (2.70)

Having this representation, we can immediately obtain the distribution p(x)
of the observations from (2.68) (lower right block matrix) and (2.70) (lower par-
tition):

p(x) = N (x|µ,WW> + σ2I). (2.71)

This distribution is illustrated in Figure 2.2 right panel.

2.4.3 Maximum Likelihood

We now return to the case where we are given actual observations in the form of
a d× n centred data matrix X.

X = (x1, . . . ,xn). (2.72)

For given data that have not been centred, one can show that the (unique) max-
imum likelihood solution of the mean is the sample mean. Like earlier in this
chapter, we now assume that the sample mean has been subtracted from the data
points, and that the resulting random vector x has zero mean, i.e. E[x] = µ = 0.

The probabilistic PCA model has parametersW and σ2 that we need to infer.
Following (2.71), the log-likelihood has the form

log p(X|W , σ2) =

n∑
i=1

log p(xi|µ,W , σ2) (2.73)

=

n∑
i=1

logN (xi|µ,Σ), (2.74)

with µ = 0 and
Σ = WW> + σ2I (2.75)

denoting the covariance matrix of x under the model. To further develop the
log-likelihood in (2.74), note that a quadratic form x>Ax can be expressed as
follows

x>Ax = trace
[
x>Ax

]
(2.76)

(A.8)
= trace

[
Axx>

]
, (2.77)

Data Mining and Exploration, Spring 2021

32 Principal Component Analysis

where the first line holds because x>Ax is a scalar. Due to the linearity of the
trace operator, we thus have

n∑
i=1

x>i Axi = n trace

[
A

1

n

n∑
i=1

xix
>
i

]
(2.78)

= n trace
[
AΣ̂

]
(2.79)

where

Σ̂ = cov(X) =
1

n

n∑
i=1

xix
>
i =

1

n
XX> (2.80)

denotes the sample covariance matrix. With this relationship in hand, we can
write the log-likelihood in (2.74) compactly as follows

log p(X|W , σ2) =
n∑
i=1

logN (xi|0,Σ) (2.81)

(2.59)
=

n∑
i=1

[
−1

2
d log(2π)− 1

2
log(|det(Σ)|)− 1

2
x>i Σ−1xi

]
(2.82)

= −n
2

[d log(2π) + log(|det(Σ)|)]− 1

2

n∑
i=1

x>i Σ−1xi (2.83)

(2.79)
= −n

2

[
d log(2π) + log(|det(Σ)|) + trace(Σ−1Σ̂)

]
. (2.84)

To derive the maximum likelihood solutionsWML and σ2
ML, one can maximise

(2.84) with respect to W and σ2. It was shown by Tipping and Bishop, 1999
that the solution for W is given by

WML = Uk(Λk − σ2I)1/2R, (2.85)

where Uk are the k principal eigenvectors of Σ̂ with corresponding eigenvalues
in the k × k diagonal matrix Λk and R is an arbitrary k × k orthogonal matrix.
R can be interpreted as a rotation or reflection in the latent space and indicates
that the solution is not unique. For instance, we can set R to I yielding WML =
Uk(Λk − σ2I)1/2. For σ2 the solution is

σ2
ML =

1

d− k

d∑
i=k+1

λi, (2.86)

where λk+1, . . . , λd denote the smallest eigenvalues of Σ̂. σ2
ML therefore represents

the average lost variance per residual dimension. The derivation of this result is
lengthy (see Tipping and Bishop, 1999) and will not be covered in this lecture.
Briefly, one can consider different classes ofW for which ∂ log p(X|W , σ2)/∂W =
0. Here, it helps to express W in terms of its singular value decomposition.

Practically, to calculate the maximum likelihood solution, we can first com-
pute the eigenvalue decomposition of Σ̂, then compute σ2

ML using (2.86) and
compute WML using (2.85) with σ2 = σ2

ML.

Data Mining and Exploration, Spring 2021

2.4 Probabilistic PCA 33

2.4.4 Relation to PCA

PCA maps the observed data to principal component scores: zi = U>k xi. Prob-
abilistic PCA, on the other hand, maps the latent space to the data space (2.60).
In the probabilistic PCA framework, the closest thing to the PCA mapping is the
posterior distribution p(z|xi) which represents a whole distribution in the latent
space (instead of being just a single vector zi like in the case of PCA).

To find the posterior distribution, we fix x in the equations of the joint dis-
tribution (2.62). This, again, yields a multivariate normal distribution. The
second order coefficients for variable z and constant x are given by the upper left
block matrix on the right hand side of (2.67). The covariance matrix of p(z|x)
is therefore given by the inverse of that matrix:

Cov[z|x] =

(
I +W> 1

σ2
W

)−1

= σ2(W>W + σ2I)−1 = σ2M−1, (2.87)

where
M = W>W + σ2I. (2.88)

The linear coefficients for variable z and constant x are given by

1

2
W> 1

σ2
x+

1

2

(
x>

1

σ2
W

)>
−W> 1

σ2
µ = W> 1

σ2
(x− µ). (2.89)

With (2.66), we obtain the mean of p(z|x) as

E[z|x] = σ2M−1W> 1

σ2
(x− µ) = M−1W>(x− µ) (2.90)

and therefore
p(z|x) = N (z|M−1W>(x− µ), σ2M−1). (2.91)

The mean E[z|x] features a pseudo-inverse of W , namely W † = M−1W>. For
σ = 0, note that W †Wz = (W>W)−1W>Wz = z if the d× k matrix W has
rank k, so that W>W is invertible. If x has been generated according to (2.60)
with σ = 0, so that x − µ = Wz∗ where z∗ denotes some fixed value of z, we
thus obtain E[z|x] = z∗. This means that we can recover z from x if the noise
in the generative process is zero and if the d × k matrix W that was used to x
is known. If σ > 0, we can think that M−1 is a regularised inverse of W>W ,
which exists even if W does not have rank k, which makes

W † = (W>W + σ2I)−1W> (2.92)

a generalised pseudo-inverse of W .
More realistically, we do not know W that was used to generate x. We now

discuss the relation of the posterior distribution to the PCA mapping when using
the maximum likelihood estimate WML for W . Recall that in PCA, the projec-
tion onto the subspace spanned by the first k principal components is given by
x̂ = UkU

>
k x, see (2.30). Assuming that the data are centred, the corresponding

projection in the probabilistic PCA framework is

x̂ = WML E[z|x] (2.93)

= WMLM
−1
MLW

>
MLx, (2.94)

Data Mining and Exploration, Spring 2021

34 Principal Component Analysis

where MML = W>
MLWML + σ2I. For σ2 = 0, we recover the PCA projection:

WML → UkΛ
1/2
k R (2.95)

MML → R>ΛkR (2.96)

WMLM
−1
MLW

>
MLx→ UkΛ

1/2
k RR>Λ−1

k RR
>Λ

1/2
k U>k x (2.97)

= UkΛ
1/2
k Λ−1

k Λ
1/2
k U>k x (2.98)

= UkU
>
k x, (2.99)

where we have used that U>k Uk is the k× k identity matrix and that R> = R−1

for rotation matrices. Thus, PCA can be seen as a special case of probabilistic
PCA when the noise variance σ2 is negligibly small.

References

[1] Christopher M. Bishop. Pattern Recognition and Machine Learning. Secau-
cus, NJ, USA: Springer-Verlag New York, Inc., 2006. isbn: 0387310738.

[2] Michael E Tipping and Christopher M Bishop. “Probabilistic principal com-
ponent analysis”. In: Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology) 61.3 (1999), pp. 611–622.

Data Mining and Exploration, Spring 2021

Chapter 3

Dimensionality Reduction

Dimensionality reduction is about representing the data in a lower dimensional
space in such a way that certain properties of the data are preserved as much
as possible. Dimensionality reduction can be used to visualise high-dimensional
data if the plane is chosen as the lower dimensional space. Taking linear di-
mensionality reduction by principal component analysis (PCA) as starting point,
several nonlinear dimensionality reduction methods are presented.

3.1 Linear Dimensionality Reduction

We can represent d-dimensional data by their first k principal components, or
more precisely, their first k principal component scores. The principal compo-
nents can be computed when the data are given in form of data vectors, and,
importantly, also when given in form of inner products or distances between
them.

3.1.1 From Data Points

Denote the uncentred data by x̃1, . . . , x̃n and the corresponding data matrix by
X̃,

X̃ = (x̃1, . . . , x̃n). (3.1)

We first centre the data and form the matrix X,

X = X̃Cn Cn = In −
1

n
1n1

>
n , (3.2)

where Cn is the centring matrix from (1.53). Depending on the application, we
may want to further process the data, e.g. by some form of standardisation that
was introduced in Section 1.3.

We can now compute the principal components via an eigenvalue decomposi-
tion of the covariance matrix Σ,

Σ =
1

n
XX>. (3.3)

Denoting the matrix with the top k eigenvectors ui by Uk,

Uk = (u1, . . . ,uk), (3.4)

36 Dimensionality Reduction

the matrix with the principal component (PC) scores is

Z = U>k X. (3.5)

While X is d × n, Z is k × n. The column vectors of Z have dimension k ≤ d
and form a lower dimensional representation of the data.

In dimensionality reduction, we are mostly interested in the PC scores, rather
than the PC directions. We can thus bypass the computation of the PC directions
and compute the PC scores directly from the Gram matrixG introduced in (2.52),

G = X>X. (3.6)

With (2.57), the k × n matrix Z in (3.5) equals

Z =

√
Λ̃kV

>
k , (3.7)

where the diagonal k × k matrix Λ̃k contains the top k eigenvalues of G or-
dered from large to small, and the n × k matrix Vk contains the corresponding
eigenvectors.

3.1.2 From Inner Products

The elements (G)ij of the Gram matrix G = X>X are the inner products
between the centred data points xi and xj ,

(G)ij = x>i xj = (x̃i − µ)>(x̃j − µ). (3.8)

Since we can compute the principal component scores (but not the directions)
by an eigenvalue decomposition of the Gram matrix, we can do dimensionality
reduction without actually having seen the data points xi. Knowing their inner
products is enough.

But what should we do if we are only given the inner products between the
original data points and not between the centred data points? That is, what
should we do if we are only given the matrix G̃,

G̃ = X̃>X̃, (3.9)

and not G?
It turns out that we can compute G from G̃. With X = X̃Cn, where Cn is

the centring matrix, we have

G = X>X = C>n X̃
>X̃Cn = CnX̃

>X̃Cn = CnG̃Cn, (3.10)

where we have used that Cn is a symmetric matrix. This operation is called
double centring: Multiplying G̃ with Cn from the right makes all rows have zero
average while multiplying it from the left makes all columns have a zero average.

Since inner products can be used to measure the similarity between data
points, matrices like G̃ and G are sometimes called similarity matrices. We can
thus say that we can do dimensionality reduction by PCA given a similarity
matrix (with inner products) only.

Data Mining and Exploration, Spring 2021

3.1 Linear Dimensionality Reduction 37

3.1.3 From Distances

We here show that we can exactly recover the PC scores if we are only given the
squared distances δ2

ij between the data points x̃i and x̃j ,

δ2
ij = ||x̃i − x̃j ||2 = (x̃i − x̃j)>(x̃i − x̃j). (3.11)

The matrix ∆ with elements δ2
ij is called a distance matrix. Note that matrices

with non-squared δij are also called distance matrices. There is some ambiguity
in the terminology.

The trick is to recover the Gram matrix G in (2.52) from the distance matrix
∆: First, we note that the δ2

ij equal the squared distances between the centred
data points xi,

δ2
ij = ||(x̃i − µ)− (x̃j − µ)||2 = ||xi − xj ||2 = (xi − xj)>(xi − xj). (3.12)

Multiplying out yields

δ2
ij = ||xi||2 + ||xj ||2 − 2x>i xj . (3.13)

Importantly the first term ||xi||2 is constant along row i of the matrix ∆. We can
thus eliminate it by multiplying ∆ with the centring matrix Cn from the right.
This is because

(∆Cn)ij = (∆)ij −
1

n

n∑
j=1

(∆)ij , (3.14)

as, for example, in (1.61). In more detail, let us compute

1

n

n∑
j=1

(∆)ij =
1

n

n∑
j=1

δ2
ij (3.15)

= ||xi||2 +
1

n

n∑
j=1

||xj ||2 − 2
1

n

n∑
j=1

x>i xj (3.16)

which equals

1

n

n∑
j=1

(∆)ij = ||xi||2 +
1

n

n∑
j=1

||xj ||2 − 2x>i

(1

n

n∑
j=1

xj︸ ︷︷ ︸
0

)
(3.17)

= ||xi||2 +
1

n

n∑
j=1

||xj ||2, (3.18)

because the xj are centred and hence
∑

j xj = 0. We thus find that

(∆Cn)ij = ||xi||2 + ||xj ||2 − 2x>i xj − ||xi||2 −
1

n

n∑
j=1

||xj ||2 (3.19)

= ||xj ||2 − 2x>i xj −
1

n

n∑
j=1

||xj ||2. (3.20)

Data Mining and Exploration, Spring 2021

38 Dimensionality Reduction

Now, the terms ||xj ||2 and 1/n
∑n

j=1 ||xj ||2 are constant along column j of the
matrix ∆Cn. We can thus eliminate them by multiplying ∆Cn with Cn from
the left. Calculations as above show that

(Cn∆Cn)ij = (∆Cn)ij −
1

n

∑
i

(∆Cn)ij = −2x>i xj . (3.21)

We thus have Cn∆Cn = −2G, and hence obtain the desired result,

G = −1

2
Cn∆Cn. (3.22)

In the previous section, we double centred the similarity matrix G̃ to obtain G.
Here, we double centre the distance matrix ∆, and swap the signs to convert
distances to similarities. Once G is available, we compute the principal compo-
nent scores as before via an eigenvalue decomposition, see the previous section
or Equations (2.53) and (2.57).

3.1.4 Example

Figure 3.1(a) shows data that can be well represented by one principal component.
The data vary mostly along the diagonal and projecting them onto the first
principal component (red line) captures most of the variability. In Figure 3.1(b)
we colour-code each data point by its principal component score. The scores
are the coordinates of the data with respect to the basis given by the principal
component direction. We can see that there is a good correspondence between
the value of the scores and the location of the data points. The scores change
smoothly from large to small as we move along the diagonal: they faithfully
represent the data and capture their structure well.

The data in Figure 3.2, on the other hand, are not as well represented by
the first principal component. The first principal component direction captures
the direction of maximal variance but the data are treated as a cloud of points
and the scores roughly indicate the location of the data along the y-axis but not
their position on the circle. The principal component scores do not capture the
circular structure of the data.

Why is PCA doing better for data as in Figure 3.1 than for data as in Figure
3.2? This can be understood by considering that PCA projects the data onto a
lower-dimensional subspace (Section 2.2). Subspaces are closed under addition
and multiplication, which means that any point on a line going through two
points from the subspace is also included in the subspace (see e.g. Section A.5).
For the data in Figure 3.2, however, there are gaps of empty space between two
data points that are unlikely to be filled even if we had more data. Such kind of
data are said to lie on a manifold, and lines between two points on a manifold
may not be part of the manifold (see, for example, Chapter 16 of Izenman (2008)
or Chapter 1 of Lee and Verleysen (2007)). If the data are part of a subspace, it is
reasonable to judge the distance between two points by the length of the straight
line connecting them, like in PCA, but if the data are on a manifold, straight
lines are a poor measure of their distance. Similarly, the linear projections that
are used to compute the principal component scores do not take the manifold
structure of the data into account.

Data Mining and Exploration, Spring 2021

3.2 Dimensionality Reduction by Kernel PCA 39

-1 0 1 2

x1

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
2

(a) Principal component direction

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x1

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
2

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) Principal component scores

Figure 3.1: Dimensionality reduction by principal component analysis. (a) The
red line shows the direction of the first PC direction. (b) The colours indicate
the value of the PC score assigned to each data point.

3.2 Dimensionality Reduction by Kernel PCA

Principal component analysis uses linear projections to compute the lower di-
mensional representation of the data. We here discuss kernel PCA where the
projections are typically nonlinear.

3.2.1 Idea

The principal components represent the data so that the variance is maximally
preserved. Assume that we expand the dimensionality of the xi by transforming
them to features φ(xi), which might be learned using neural networks. For the
sake of argument, consider features of the form

φ(x) = (x1, · · · , xd, x1x2, · · · , x1xd, · · · , xdxd)>, (3.23)

where x = (x1, · · · , xd)>. The much higher dimensionality of the φi = φ(xi)
does not matter as long as we only compute k principal components from them.

Importantly, the k principal components maximally preserve the variance of
the φi that contains much more information about the data than the variance of
the xi. The covariance matrix for the particular φ(x) above, for example, contains
terms like E(x1x2x

2
3) that measure non-linear correlations between the different

dimensions of the data. Similarly, the principal components best approximate
the φi which is much harder than approximating the xi, so that the principal
components computed from the φi must capture more information about the
data than the components computed from the xi.

Hence, we can power up PCA dimensionality reduction by choosing a trans-
formation φ that maps the data points xi to φi = φ(xi), and then computing the
principal component scores from the new “data matrix” Φ,

Φ = (φ1, . . . ,φn), (3.24)

Data Mining and Exploration, Spring 2021

40 Dimensionality Reduction

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-1.5

-1

-0.5

0

0.5

1

x
2

(a) Principal component direction

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-1.5

-1

-0.5

0

0.5

1

x
2

-1

-0.5

0

0.5

1

1.5

(b) Principal component scores

Figure 3.2: Dimensionality reduction by principal component analysis. (a) The
red line shows the direction of the first PC direction. (b) The colours indicate
the value of the PC score assigned to each data point.

rather than from the original data matrix X. We call this approach dimension-
ality reduction by nonlinear PCA. (Note that “nonlinear PCA” sometimes refers
to other kinds of methods too.)

3.2.2 Kernel Trick

Since we can compute the principal components scores from the Gram matrix of
Φ, we actually do not need to know the individual φi, but only the inner products
φ>i φj = φ(xi)

>φ(xj).
The theory of reproducing kernel Hilbert spaces tells us that for some func-

tions φ, the inner product can be computed as

φ(xi)
>φ(xj) = k(xi,xj), (3.25)

where k(x,x′) is called the kernel function (see, e.g. Schölkopf and Smola, 2002).
This means that for some functions φ, we actually do not need to know the
transformed data points φi to compute the inner product between them, it is
enough to know the kernel k(x,x′). This is called the “kernel trick” and can be
used to compute the (uncentred) Gram matrix of Φ as

(G̃)ij = φ>i φj = φ(xi)
>φ(xj) = k(xi,xj). (3.26)

Performing PCA via a Gram matrix defined by kernels as above is called kernel
PCA and has been introduced by Schölkopf, Smola, and Müller (1997).

Examples of kernels are the polynomial and Gaussian kernels,

k(x,x′) = (x>x′)a, k(x,x′) = exp

(
−||x− x

′||2

2σ2

)
, (3.27)

where the exponent a and width-parameter σ2 are hyperparameters that need
to be chosen by the user. We see that the two kernels only require the inner

Data Mining and Exploration, Spring 2021

3.2 Dimensionality Reduction by Kernel PCA 41

products or distances between the data points xi so that kernel PCA can also be
used if that information is available only.

After specification of G̃, we proceed exactly as in Section 3.1:

• Double centre G̃ to compute

G = CnG̃Cn. (3.28)

• Compute the matrix Z with the (kernel) PC scores by an eigenvalue de-
composition of G,

Z =

√
Λ̃kV

>
k , (3.29)

where, as before, the diagonal k×k matrix Λ̃k contains the top k eigenvalues
of G ordered from large to small, and the n × k matrix Vk contains the
corresponding eigenvectors.

3.2.3 Example

Let us reconsider the circularly structured data of Figure 3.2 and use nonlinear
PCA to compute a one-dimensional representation. We map the data points xi
to features φi using the function φ(x) = φ(x1, x2),

φ(x1, x2) =
(
x1, x2,

√
x2

1 + x2
2, atan(x2, x1)

)>
, (3.30)

where x1, x2 are the first and second element of the vector x. The last two
elements in the vector φ(x) are the polar coordinates of x, which should be helpful
given the circular structure of the data. Figure 3.3 visualises the first principal
component scores computed from the transformed data matrix Φ. We can see
that the lower dimensional representation by the first PC scores is reflecting the
circular structure of the data. But there is a discontinuity in the scores around
the point (−1, 0), and the scores still ignore that a piece of the circle is missing:
data points on the lower left are assigned similar values as data points on the
lower right.

Figure 3.4 visualises the one-dimensional representation achieved by kernel
PCA with the Gaussian kernel in (3.27). The hyperparameter σ2 was determined
from the quantiles of all distances between all (different) data points. The results
do not seem better than the results with ordinary PCA in Figure 3.2.

Centring was the only preprocessing for the results above. Let us next also
scale each variable to unit variance before dimensionality reduction by kernel PCA
(see Section 1.3.1 on data standardisation). Figure 3.5 shows that kernel PCA on
the standardised data yields a mostly meaningful one-dimensional representation
for a wide range of different tuning parameters σ2. The kernel PC scores change
smoothly as we move on the data manifold. But the representation does ignore
the gap between the lower-left and lower-right branch, so that points on the
lower-left of the manifold (where x2 < −1.5 and x1 ≈ −1) are considered closer
to points on the lower-right of the manifold than points further up on the left
branch. This may be considered a drawback of the representation.

Data Mining and Exploration, Spring 2021

42 Dimensionality Reduction

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-1.5

-1

-0.5

0

0.5

1

x
2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 3.3: Dimensionality reduction by nonlinear PCA. Visualisation as in
Figure 3.2(b).

3.3 Multidimensional Scaling

Multidimensional scaling (MDS) is an umbrella term for several methods that
operate on dissimilarities δij . Euclidean distances are examples of dissimilarities
but dissimilarities are more general in that they can be any kind of measure of
difference between two data items. The goal of MDS is to find a configuration of
points in the plane, or the Euclidean space, so that their distances well represent
the original dissimilarities.

3.3.1 Metric MDS

In metric MDS, the numerical values of the dissimilarities are assumed to carry
information. This is in contrast to nonmetric MDS below where only the rank-
order of the dissimilarities matters.

Denote the pairwise dissimilarities between n data points by δij . A basic
version of metric MDS consists in finding n points zi ∈ Rk that solve:

minimise
z1,...,zn

∑
i<j

wij(||zi − zj || − δij)2, (3.31)

where ||zi − zj || is the Euclidean distance between zi and zj ,

||zi − zj || =
√

(zi − zj)>(zi − zj). (3.32)

The wij ≥ 0 are some weights specified by the user. The dimensionality k is
typically set to two so that the data can be visualised on the plane. More complex
versions of metric MDS exist where the dissimilarities δij enter into the equation
only after transformation with some monotonic function that is learned as well,
see e.g. (Izenman, 2008, Section 13.7) or (Borg and Groenen, 2005, Chapter 9).
The optimisation problem is typically solved by gradient descent.

For wij = 1/δij , the solution for the optimisation problem in (3.31) is called
the Sammon nonlinear mapping. This choice of weights emphasises the faithful
representation of small dissimilarities.

Data Mining and Exploration, Spring 2021

3.3 Multidimensional Scaling 43

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-1.5

-1

-0.5

0

0.5

1

x
2

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(a) σ2: 0.01 quantile of all distances

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-1.5

-1

-0.5

0

0.5

1

x
2

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) σ2: 0.05 quantile

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-1.5

-1

-0.5

0

0.5

1

x
2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(c) σ2: 0.1 quantile

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-1.5

-1

-0.5

0

0.5

1

x
2

-0.4

-0.2

0

0.2

0.4

0.6

(d) σ2: 0.25 quantile

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-1.5

-1

-0.5

0

0.5

1

x
2

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(e) σ2: 0.5 quantile

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-1.5

-1

-0.5

0

0.5

1

x
2

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(f) σ2: 0.75 quantile

Figure 3.4: Dimensionality reduction by kernel principal component analysis.
The Gaussian kernel was used where σ2 was determined by the quantiles of the
distances. The colours indicate the value of the (kernel) principal component
score assigned to a data point. The sign of the scores in each panel is arbitrary.

Data Mining and Exploration, Spring 2021

44 Dimensionality Reduction

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-1.5

-1

-0.5

0

0.5

1

x
2

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) σ2: 0.01 quantile of all distances

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-1.5

-1

-0.5

0

0.5

1

x
2

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(b) σ2: 0.05 quantile

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-1.5

-1

-0.5

0

0.5

1

x
2

-0.6

-0.4

-0.2

0

0.2

0.4

(c) σ2: 0.1 quantile

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-1.5

-1

-0.5

0

0.5

1

x
2

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(d) σ2: 0.25 quantile

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-1.5

-1

-0.5

0

0.5

1

x
2

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(e) σ2: 0.5 quantile

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-1.5

-1

-0.5

0

0.5

1

x
2

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(f) σ2: 0.75 quantile

Figure 3.5: Dimensionality reduction by kernel principal component analysis on
standardised data. The setup and visualisation is otherwise as in Figure 3.4.

Data Mining and Exploration, Spring 2021

3.3 Multidimensional Scaling 45

3.3.2 Nonmetric MDS

In nonmetric MDS, only the relation between the δij is assumed to matter, i.e.
whether δ12 ≥ δ13 or δ12 ≤ δ13 , and not the actual values of the dissimilari-
ties. Such data are obtained, for example, when people are asked to rate the
dissimilarity on a scale from 0 (“identical”) to 5 (“very different”).

Since the actual values of δij do not matter, in nonmetric MDS, the optimi-
sation problem in (3.31) is modified to

minimise
z1,...,zn,f

∑
i<j

wij(||zi − zj || − f(δij))
2, (3.33)

where f is a monotonic (non-decreasing) function that converts the dissimilarities
to distances. The optimisation problem is typically solved by iterating between
optimisation with respect to the zi and optimisation with respect to f , which can
be done by regression (for further information, see, e.g. Izenman, 2008, Section
13.9).

3.3.3 Classical MDS

Classical MDS is also called classical scaling. It operates on the same kind of data
as in metric scaling, that is, the actual numerical values of the dissimilarities are
assumed to matter.

Classical scaling posits that the dissimilarities δij are (squared) Euclidean dis-
tances between some unknown, hypothetical vectors of unknown dimensionality.
Identifying the dissimilarity matrix ∆ that is formed by the δij with a distance
matrix between the unknown vectors brings us back to the setting from Section
3.1.3, and we can use the developed theory to determine the lower dimensional
zi ∈ Rk, i = 1 . . . n:

1. Compute the hypothetical Gram matrix G′ of the unknown centred data
points,

G′ = −1

2
Cn∆Cn, Cn = In −

1

n
1n1

>
n , (3.34)

as in (3.22). (The ′ should emphasise thatG′ is a hypothetical Gram matrix,
it does not denote the transpose of the matrix.)

2. Compute the top k eigenvalues σ2
k and corresponding eigenvectors vk ∈ Rn

of G, and form the matrices Λ̃k = diag(σ2
1, . . . , σ

2
k) and Vk = (v1, . . . ,vk).

3. The k × n matrix Z with the zi as its columns,

Z = (z1, · · · , zn), (3.35)

is then given by Z =
√

Λ̃kV
>
k , as in (2.57).

Classical MDS can thus turn any dissimilarity matrix ∆ into a configuration of
lower-dimensional vectors zi that represent the dissimilarities. It also has the nice
property that it produces nested solutions because the classical MDS solution for
k′ < k is directly given by the first k′ coordinates of the k-dimensional zi.

Data Mining and Exploration, Spring 2021

46 Dimensionality Reduction

There is one subtle technical caveat: The matrix ∆ is symmetric but not
necessarily positive semidefinite. This is because we only pretended that ∆ cor-
responds to Euclidean distances in some unknown space, but this may only hold
approximately. Since ∆ is not necessarily positive semidefinite, some of its eigen-
values may be negative so that taking square roots as above in the third step
would not yield meaningful representations. The simple fix is to choose k small
enough that all eigenvalues contained in Λ̃k are indeed positive.

For matrices ∆ that are not positive semidefinite, eigenvectors corresponding
to negative eigenvalues are thus excluded. We can think of this operation as a
way to approximate ∆ by a positive semidefinite matrix. It turns out that the
simple operation of excluding directions with negative eigenvalues is actually the
optimal positive semidefinite approximation of ∆ with respect to the Frobenius
norm (see Section A.10.3). Further results from linear algebra show that the lower

dimensional representation Z =
√

Λ̃kV
>
k yields the best low rank approximation

of G′ with respect to the Frobenius norm (see Section A.10.4). That is, Z is the
solution to

minimise
M

||(−1

2
Cn∆Cn)−M>M ||F

subject to rank(M>M) = k

(3.36)

This is a different optimisation problem than the one in (3.31) for metric MDS,
and the solution returned by classical and metric MDS are generally not the same.

3.3.4 Example

Let us apply the Sammon nonlinear mapping to the circularly shaped data in
Figure 3.2, reducing the dimension from two to one. The Sammon mapping is
the solution of the optimisation problem in (3.31), which can have multiple local
minima. The algorithm was run multiple times and Figure 3.6 shows the two
different solutions typically obtained. The solution in Figure 3.6(a) basically
corresponds to the PCA-solution. The solution figure (b), however, shows that
the learned one-dimensional representation, i.e. the points z1, . . . zn in (3.31), do
take the manifold structure of the data into account.

The solution in 3.6(a) assigns the same low dimensional coordinate to the
point on the left and right branch of the manifold. Their distance is thus practi-
cally zero even though in the original data space, their distance is rather large.
The solution (b) assigns different values to the points on the left and the right
half of the circle, so that their distances in the lower dimensional space better
matches their distances in the original space.

Figure 3.7 plots the distances in the original space against the distances in
the lower dimensional space. The phenomenon described above is well visible in
that the solution from 3.6(a) has distances equal to zero even though the original
distances are around two.

3.4 Isomap

Classical MDS is used as part of the isometric feature mapping (Isomap) algo-
rithm (Tenenbaum, Silva, and Langford, 2000) where the dissimilarity δij between

Data Mining and Exploration, Spring 2021

3.5 UMAP 47

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-1.5

-1

-0.5

0

0.5

1

x
2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) Local optimum

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-1.5

-1

-0.5

0

0.5

1

x
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) Better local optimum

Figure 3.6: Dimensionality reduction by the Sammon nonlinear mapping. The
method is prone to local optima. The solution in (b) has a smaller cost than (a).
The colours indicate the value of the one-dimensional coordinate assigned to a
data point.

two data points xi ∈ Rd and xj ∈ Rd is measured by the shortest distance between
them when only allowed to travel on the data manifold from one neighbouring
data point to the next. This is called a geodesic distance. The neighbourhood of
a data point can be taken to be the m-nearest neighbours or also all points that
are within a certain (Euclidean) distance. The set of neighbourhoods defines a
graph on which one is allowed to move. For further information on Isomap, see
the original algorithm or the books by Izenman (2008, Section 16.6) and Lee and
Verleysen (2007, Section 4.3).

Figure 3.8 shows the graphs for the circularly shaped data in Figure 3.2. We
see that for a neighbourhood that is specified by 5 nearest neighbours, the graph
has two unconnected components. In this case, Isomap is often applied to each
component separately.

Figure 3.9 visualises the one-dimensional coordinates z1, . . . , zn that are ob-
tained by applying classical MDS on the geodesic distances. They well represent
the circular structure when the learned graph is connected.

3.5 UMAP

Uniform Manifold Approximation and Projection (UMAP) is a dimensionality re-
duction method by McInnes, Healy, and Melville (2018) that has become popular
due to its good performance on large datasets.

Like Isomap, UMAP is a nearest neighbour based graph dimensionality re-
duction method. For Isomap, a nearest neighbour graph is used to transform
the original data to a dissimilarity matrix ∆. For UMAP, separate (weighted)
graphs are calculated for the original data X̃ and for the low dimensional data
representation M . The representation M is then varied to minimise a graph
distance to the original data.

For given points Y = (y1, . . . ,yn), the graph is constructed in the following

Data Mining and Exploration, Spring 2021

48 Dimensionality Reduction

0 0.5 1 1.5 2 2.5 3 3.5 4

Distance between original data points

0

0.5

1

1.5

2

2.5

3

3.5

4

D
is

ta
n

c
e

 i
n

 1
D

 r
e

p
re

s
e

n
ta

ti
o

n

Figure 3.7: Dimensionality reduction by the Sammon nonlinear mapping. Com-
parison of the distances in the original and lower dimensional space. The blue
points correspond to the solution in Figure 3.6(a); the red points to the solution
in Figure 3.6(b)

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

x
2

(a) 5 neighbours

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

x
2

(b) 10 neighbours

Figure 3.8: Dimensionality reduction by Isomap. Comparison of graphs con-
structed from different neighbourhoods.

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-1.5

-1

-0.5

0

0.5

1

x
2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) 5 neighbours

-1.5 -1 -0.5 0 0.5 1 1.5

x1

-1.5

-1

-0.5

0

0.5

1

x
2

-3

-2

-1

0

1

2

3

(b) 10 neighbours

Figure 3.9: Dimensionality reduction with Isomap. The colours indicate the
value of the one-dimensional coordinate assigned to each data point.

Data Mining and Exploration, Spring 2021

3.5 UMAP 49

PCA

Di
gi
ts

0.03 s

MDS

104.44 s

Isomap

2.64 s

UMAP

7.18 s

Figure 3.10: Comparison of dimensionality reduction with PCA, Metric MDS,
Isomap and UMAP on a dataset of handwritten digits from 0 to 9. Colours
indicate the digit classes. Adapted from https://umap-learn.readthedocs.io/.

way. First, generate the m nearest neighbour graph for Y . Then, for each yi,
compute weights for each outgoing edge:

w
(Y)
i (yi,yj) = exp

(
−||yi − yj || − ρi

σi

)
, (3.37)

where ρi denotes the distance to the nearest neighbour and σi is a measure of
the size of the neightbourhood around yi (the “diameter”, see the original paper
on how it is computed). The metrics used to compute the distances may depend
on the nature of the data; their choice is a hyperparameter of the method. The
weight can be interpreted as the probability that the edge exists. Since ρi is the
distance to the nearest neighbour of yi, the weight to the nearest neighbour is
one, and this ensures that each point connects to at least one other point.

Note that we obtain two weights per edge which can be asymmetric, i.e.

w
(Y)
i (yi,yj) 6= w

(Y)
j (yj ,yi). To symmetrise, UMAP sets

w(Y)(yi,yj) = w
(Y)
i (yi,yj) + w

(Y)
j (yj ,yi)− w(Y)

i (yi,yj)w
(Y)
j (yj ,yi) (3.38)

which can be interpreted as the probability that at least one of the edges exists.
We thus obtain a weight matrixW (Y) with (W (Y))ij = w(Y)(yi,yj) representing
the graph in a probabilistic manner.

Using the above approach, we can calculate W (X̃) for the observed data X̃
and W (M) for a candidate lower dimensional representation M . To quantify the
distance between W (X̃) and W (M), we compute the average Kullback-Leiber
divergence between the weights (probabilities) W (X̃) and W (M)

C(W (X̃),W (M)) =
∑
i<j

w
(X̃)
ij log

w
(X̃)
ij

w
(M)
ij

+ (1− w(X̃)
ij) log

 (1− w(X̃)
ij)

(1− w(M)
ij)

 .

(3.39)
The lower dimensional representation Z is then the solution to

minimise
M

C(W (X̃),W (M)). (3.40)

Details on how the optimisation problem is solved efficiently can be found in the
original publication (McInnes, Healy, and Melville, 2018, Sections 2, 3).

Data Mining and Exploration, Spring 2021

50 Dimensionality Reduction

References

[1] I. Borg and P.J.F. Groenen. Modern Multidimensional Scaling: Theory and
Applications. Springer, 2005.

[2] A.J. Izenman. Modern Multivariate Statistical Techniques: Regression, Clas-
sification, and Manifold Learning. Springer, 2008.

[3] J.A. Lee and M. Verleysen. Nonlinear Dimensionality Reduction. Springer,
2007.

[4] Leland McInnes, John Healy, and James Melville. “Umap: Uniform manifold
approximation and projection for dimension reduction”. In: arXiv preprint
arXiv:1802.03426 (2018).

[5] B. Schölkopf, A. Smola, and K.-R. Müller. “Kernel principal component anal-
ysis”. In: Artificial Neural Networks ICANN’97. Springer Berlin Heidelberg,
1997, pp. 583–588.

[6] B. Schölkopf and A.J. Smola. Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization and Beyond. MIT Press, 2002.

[7] J. B. Tenenbaum, V. de Silva, and J. C. Langford. “A Global Geometric
Framework for Nonlinear Dimensionality Reduction”. In: Science 290.5500
(2000), pp. 2319–2323.

Data Mining and Exploration, Spring 2021

Chapter 4

Predictive Modelling and
Generalisation

Regression and classification are typical examples of predictive modelling. The
general goal in predictive modelling of data is to identify a relationship between
some predictor (input) and some target (output) variables that enables one to
accurately predict the values of the target variables for some newly observed
values of the predictor variables. This chapter is about evaluating the perfor-
mance of prediction models and methods, and about selecting among competing
alternatives.

4.1 Prediction and Training Loss

We here introduce the key notions of prediction and training loss.

4.1.1 Prediction Loss

Let us denote the predictor variables by x and let us assume that we are only
interested in a single target variable y. In regression, y is real-valued while
in classification, y is the class label, e.g. minus one and one. Both x and y
are considered random variables that have a joint probability density function
p(x, y). For any fixed value of x, the target variable y thus follows the conditional
distribution p(y|x). Both the joint pdf and the conditional pdf are unknown.

From a probabilistic perspective, the goal of predictive modelling is to es-
timate the conditional distribution p(y|x) from observed data. In many cases,
however, we need to report a single estimated value of y rather than a whole
distribution. That is, we are looking for a prediction function h(x) that provides
an estimate ŷ = h(x) for any value of x.

Making a prediction ŷ may incur a loss L(ŷ, y) so that certain prediction
functions are better than others. Due to the stochasticity of the predictors and
the target, the quality of a prediction function h is measured via the expected
value of L(ŷ, y),

J (h) = Eŷ,y [L(ŷ, y)] = Ex,y [L(h(x), y)] , (4.1)

which is called the prediction loss. The term Ex,y means expectation with respect
to the joint distribution of x and y, i.e. p(x, y).

52 Predictive Modelling and Generalisation

The goal of predictive modelling can be formulated as the optimisation prob-
lem

minimise
h

J (h). (4.2)

While concise, the formulation hides some fundamental issues: First, we gener-
ally cannot compute the expectation over (x, y) analytically. Secondly, the loss
function L may not be easy to evaluate—it could, for example, be given by user
ratings that indicate the quality of a prediction ŷ. And thirdly, minimising the
prediction loss with respect to a function is generally difficult.

4.1.2 Training Loss

The objective in (4.2) can typically not be computed and the optimisation prob-
lem not be solved exactly. We make a number of approximations to obtain a
computable loss function for which optimisation is, at least in principle, feasible.

If n samples (xi, yi) are available that are each independently drawn from
p(x, y),

(xi, yi)
iid∼ p(x, y), (4.3)

the expectation in the definition of the prediction loss can be approximated by a
sample average,

J (h) ≈ 1

n

n∑
i=1

L(h(xi), yi). (4.4)

The samples (xi, yi) are called the training data Dtrain,

Dtrain = {(x1, y1), . . . , (xn, yn)}. (4.5)

In the sample-average approximation, we assumed that training data are avail-
able that come from the same distribution p(x, y) as the data for which we would
like to perform predictions. In many cases, however, this assumption is violated
and the training data come from a different distribution. This can lead to inac-
curate predictions, so that care should be taken that, if possible, at least parts
of the training data are representative of the conditions for which the prediction
function will be ultimately used.

Instead of minimising the (approximate) prediction loss with respect to any
function h, we typically search for h inside model families that are parametrised
by some parameters θ, so that h(x) = hλ(x;θ), where λ is a vector of hyper-
parameters indicating the model family and some tuning parameters associated
with it. The hyperparameters could for example indicate whether we use re-
gression trees or neural networks. And when using neural networks, they could
additionally indicate the number of hidden units, whereas θ would correspond to
the weights in the network.

The number of parameters θ may be rather large so that gradient informa-
tion is needed in the optimisation. But some loss functions L, like for example
classification error, are not differentiable so that gradient descent is not possi-
ble. Other loss functions L may be expensive to evaluate, like for example when
based on user ratings. For practical reasons, we may thus prefer to determine θ
by minimising a proxy loss function L rather than the loss function L that we
are really interested in.

Data Mining and Exploration, Spring 2021

4.1 Prediction and Training Loss 53

In summary, instead of working with J (h) we work with the training loss
function Jλ(θ),

Jλ(θ) =
1

n

n∑
i=1

L(hλ(xi;θ), yi). (4.6)

Minimisation of Jλ(θ) is typically done by minimising the loss function with
respect to θ separately for fixed values of the hyperparameters. We then obtain
a set of prediction function ĥλ(x) indexed by λ,

ĥλ(x) = hλ(x; θ̂λ), θ̂λ = argmin
θ

Jλ(θ). (4.7)

Determining ĥλ(x) from training data is called model estimation. The associated
minimal value of the training loss function is the training loss J∗λ,

J∗λ = min
θ
Jλ(θ). (4.8)

The training loss function Jλ(θ), the prediction function ĥλ(x), and the corre-
sponding training loss J∗λ all depend on the training data Dtrain. Different training
data sets will result in different loss functions, different prediction functions, and
different training losses. This means that they are all random quantities whose
stochasticity is induced by the variability of the training data.

Minimising Jλ(θ) for several λ yields a set of prediction functions ĥλ(x).
Choosing from them the prediction function ĥ(x) that is actually used for making
predictions is done by a process called hyperparameter selection. If the hyper-
parameter indicates the model family, the process is called model selection. We
will see below that choosing the hyperparameters that yield the smallest training
loss is generally a bad idea because the corresponding prediction function tends
to be highly specific to the particular training data used and thus may perform
poorly when making predictions for new (unseen) values of x.

4.1.3 Example

Let us illustrate the above concepts on a simple example where the joint distri-
bution of the prediction and target variable is given by

p(x) =
1√
2π

exp

(
−1

2
x2

)
, (4.9)

p(y|x) =
1√
2π

exp

(
−1

2
(y − g(x))2

)
, g(x) =

1

4
x+

3

4
x2 + x3. (4.10)

The function g(x) is the conditional mean E(y|x). It minimises the expected
square loss, i.e. (4.1) for

L(ŷ, y) = (ŷ − y)2. (4.11)

We assume that we have a training data set Dtrain with n data points (xi, yi).
Figure 4.1(a) shows g(x) and an example training set.

Data Mining and Exploration, Spring 2021

54 Predictive Modelling and Generalisation

Training Loss for Linear Regression

Let us first work with a linear prediction model so that

h1(x;θ) = θ0 + θ1x, θ = (θ0, θ1)>, (4.12)

where θ0 is the intercept and θ1 the slope parameter. When using the quadratic
loss, the training loss function is

J1(θ) =
1

n

n∑
i=1

(yi − θ0 − θ1xi)
2. (4.13)

For any value of θ1, the optimal value of the constant θ0 is

θ̂0 = ȳ − θ1x̄, ȳ =
1

n

n∑
i=1

yi, x̄ =
n∑
i=1

1

n
xi, (4.14)

so that θ1 is the only unknown when working with centred data. The training
loss function becomes

J1(θ1) =
1

n

n∑
i=1

((yi − ȳ)− θ1(xi − x̄))2. (4.15)

Minimising J1(θ1) yields θ̂1,

θ̂1 = argmin
θ1

J1(θ1), (4.16)

and the estimated prediction model ĥ1(x) thus equals

ĥ1(x) = θ̂0 + θ̂1x = ȳ + θ̂1(x− x̄). (4.17)

Figure 4.2(a) shows the training loss function J1(θ1) and the estimated regression
function ĥ1(x).

The training loss function J1(θ) in (4.13) varies as the training data vary.
The training loss function J1(θ) is a random quantity. Its minimiser inherits the
randomness, and the minimal training loss

J∗1 = min
w

J1(w) (4.18)

is a random variable too. The randomness is due to the variability of the training
data Dtrain. Random quantities have a probability distribution, and Figure 4.3
visualises the distribution of the training loss function and the distribution of its
minima J∗1 . The probability density function of J∗1 was estimated from relative
frequencies.

Training loss for Polynomial Regression

Instead of working with a linear prediction model, let us now consider more
general prediction models of the form

hλ(x;θ) =
λ∑
k=0

θkx
k, θ = (θ0, . . . , θλ)>. (4.19)

Data Mining and Exploration, Spring 2021

4.2 Generalisation Performance 55

x

-2 -1 0 1 2

y

-20

-15

-10

-5

0

5

10

15

observed data

true regression line

Figure 4.1: Example nonlinear regression (prediction) problem. The true regres-
sion curve is shown in black and the example training data in blue. The size of
the training data is n = 20.

The functions hλ(x;θ) are polynomials of degree λ. The hλ(x;θ) correspond to
a set of prediction models: We have one prediction model for each value of λ. Its
complexity and number of free parameters increases with increasing values of λ.
For λ = 0, the prediction model is a constant, and for λ = 1 we obtain the linear
model used above.

We can estimate the prediction models by minimising the average square loss
as before,

Jλ(θ) =
1

n

n∑
i=1

(
λ∑
k=0

θkx
k
i − yi

)2

, (4.20)

Minimising Jλ(θ) yields the prediction functions ĥλ with training loss J∗λ.

Figure 4.4(a) shows the estimated probability density function (pdf) of the
training loss J∗λ. The pdf for the polynomial of degree one is the same as in Figure
4.3(b). We see that the training loss tends to become smaller if the complexity
of the model increases.

Another view is provided in Figure 4.4(b). The figure shows the training loss
J∗λ as a function of the degree of the polynomials. We see that both the variance
and the mean of the training loss becomes smaller with increasing complexity of
the model. The same holds for more general models than the polynomial one
used here. Indeed, it is generally possible to increase the complexity of the model
to the point where the minimal training loss becomes zero (see Section 4.2.2).

4.2 Generalisation Performance

The training loss can be made smaller by using more complex models. But we are
ultimately interested in the prediction rather than in the training loss. In other

Data Mining and Exploration, Spring 2021

56 Predictive Modelling and Generalisation

θ
1

-15 -10 -5 0 5 10 15

tr
a

in
in

g
 l
o

s
s

0

50

100

150

200

250

300

350

(a) Training loss function

x

-2 -1 0 1 2

y

-20

-15

-10

-5

0

5

10

15

observed data

true regression line

fitted regression line (prediction)

(b) Fitted prediction model

Figure 4.2: The true regression curve is shown in black and the estimated re-
gression curve in red.

words, we are interested in how well we perform on unseen data after learning.
This is called generalisation performance.

4.2.1 Generalisation for Prediction Functions and Algorithms

The training loss function in (4.6) was used as a proxy of the prediction loss J (h)
in (4.1) that we are really interested in minimising. We say that a prediction
function ĥ generalises well if its prediction loss J (ĥ) is small,

J (ĥ) = Ex,y
[
L(ĥ(x), y)

]
. (4.21)

The prediction loss J (ĥ) is called the generalisation loss or the test loss of ĥ.
This is because J (ĥ) measures whether the performance of ĥ generalises from
the training data Dtrain and training loss function L to new “test” data (x, y) ∼
p(x, y) and the prediction loss function L. As argued above, J (ĥ) can generally
not be computed. But unlike before, we here do not need to solve an optimisation
problem. We only need to evaluate J at ĥ, which is considerably easier. It
amounts to estimating the expected value of L(ĥ(x), y), which can be done with
hold-out data (see Section 4.3.1).

Since the prediction function ĥ depends on the training data Dtrain, the pre-
diction loss J (ĥ) depends on the training data too. The prediction loss J (ĥ) is
thus a random variable whose stochasticity is induced by the variability of the
training sets. We will now see that its expected value J̄ can be used to measure
the generalisation performance of prediction algorithms.

Let us denote the prediction algorithm that is used to turn training data
Dtrain into a prediction function ĥ by A so that

ĥ = A(Dtrain). (4.22)

The algorithm A subsumes all operations needed to turn training data into a
prediction function, including for example the minimisation of the loss function
or the selection of hyperparameters. Think of it as a piece of code that takes

Data Mining and Exploration, Spring 2021

4.2 Generalisation Performance 57

θ
1

-15 -10 -5 0 5 10 15

tr
a

in
in

g
 l
o

s
s
 f

u
n

c
ti
o

n

0

100

200

300

400

500

600

700

800

loss functions for different training sets

average

(a) Training loss functions

training loss

0 1 2 3 4 5 6 7

e
s
ti
m

a
te

d
 p

d
f

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Training loss

Figure 4.3: The loss functions and their minima are random quantities. The
figures illustrate their distribution. (a) Loss functions for different training sets.
(b) Distribution of the square root of the training loss J∗1 for different training
sets. The dashed vertical line indicates the mean of the estimated distribution.

training data as input and returns a prediction function ĥ as output. We can
then write the expected prediction loss J̄ as a function of A

J̄ (A) = EDtrain

[
J (ĥ)

]
= EDtrain

[
J
(
A(Dtrain)

)]
. (4.23)

While J (ĥ) in (4.21) measures the performance of a specific ĥ, J̄ (A) measures
the performance of the process, or algorithm, that is used to obtain ĥ from the
training data. The purpose of the two performance measures in (4.21) and (4.23)
is thus different: J (ĥ) can be used to compare different prediction functions while
J̄ (A) can be used to compare different prediction algorithms.

If we consider algorithms Aλ that operate with different (fixed) hyperpa-
rameters λ, we can use J̄ (Aλ) to compare and select among them. Like J (ĥ),
however, the expected prediction loss J̄ (A) can typically not be computed in
closed form and needs to be estimated, for which cross-validation can be used
(see Section 4.3.1).

4.2.2 Overfitting and Underfitting

Let us consider the training and (expected) prediction loss of the prediction
functions ĥλ(x) in (4.7) for different models. By using a model with n free
parameters θ = (θ1, . . . , θn)>, we can make the training loss always equal to
zero. Indeed, if

hflexible(x;θ) =

{
θi if x = xi

0 otherwise
(4.24)

we can set θ̂i = yi and the training loss is zero (assuming that L(yi, yi) = 0).
Unless x and y can only take discrete values that are all included in the training
data, the (expected) prediction loss of ĥflexible will be large. The prediction func-
tion is overfitting the training data. More generally, a model has been overfitted

Data Mining and Exploration, Spring 2021

58 Predictive Modelling and Generalisation

0 1 2 3 4 5 6

training loss

0

0.5

1

1.5

2

2.5

3

e
s
ti
m

a
te

d
 p

d
f

degree five

degree one

linear regression

degree zero

constant

(a) Distribution of the training loss

degree of the polynomial

0 1 2 3 4 5

tr
a

in
in

g
 l
o

s
s

0

1

2

3

4

5

6

7

8

9

training loss for different training sets

average (expected value)

(b) Training loss for different models

Figure 4.4: Distribution of the training loss for different degrees of the polynomial
prediction model. The complexity of the model increases with the degree of the
polynomial.

to the training data if reducing its complexity reduces the (expected) prediction
loss.

On the other hand, a prediction model

hrigid(x; θ) = θ, (4.25)

which always takes on a constant value, will have a training loss that is rather
large. Unless the response variable y does indeed not depend on the predictors
x, the (expected) prediction loss will be large, too, and could be decreased by
choosing a more flexible model that better captures the relationship between x
and y. Prediction functions like hrigid(x; θ) are said to underfit the training data.

The problem of over- and underfitting can be addressed by model selection
and by means of regularisation. In regularisation, we work with flexible models
but augment the training loss function Jλ(θ), which measures the quality of the
prediction, with an additional term that penalises flexibility of the prediction
function. For training, we thus solve the optimisation problem

minimise
θ

Jλ(θ) + λregR(θ), (4.26)

where R(θ) is the penalty term on the parameters of hλ(x;θ) and λreg indicates
the strength of the regularisation. Typical penalty terms are

R(θ) =
∑
i

θ2
i (L2 or Tikhonov regularisation) (4.27)

R(θ) =
∑
i

|θi| (L1 regularisation) (4.28)

but also terms that penalises rapidly varying functions. The amount of regular-
isation depends on λreg. We can consider it to be another hyperparameter that
we can select in order to maximise generalisation performance.

Data Mining and Exploration, Spring 2021

4.2 Generalisation Performance 59

4.2.3 Example

We continue the example of polynomial regression to illustrate how the generali-
sation performance depends on the model complexity and the size of the training
data.

Generalisation Performance and Model Complexity

Figure 4.5(a) shows the training and prediction loss of the fitted polynomial
regression model ĥλ as a function of the degree of the polynomial (model com-
plexity) λ. We can see that the prediction loss and training loss are generally not
the same, i.e.

J (ĥλ) 6= J∗λ. (4.29)

In the figure, the prediction loss is smallest for λ = 4, and while a five-degree
polynomial has the smallest training loss, it has the largest prediction loss. Such
a mismatch between training and prediction performance is due to overfitting.
The estimated model ĥλ is highly tuned to the specific training data Dtrain and
does not reflect the general relationship between the predictor and the target
variable. In contrast, we see that increasing the complexity of the degree-zero
or degree-one polynomial will decrease the prediction loss. That is, these models
are underfitting the training data.

While Figure 4.5(a) depicts the training and prediction loss for a particular
training set, Figure 4.5(b) shows their distribution over different training data
sets. We can see that the variability of the prediction loss increases with the
flexibility of the model. This is due to overfitting because the estimated model
then depends strongly on the particularities of each training set that are bound
to vary when the training data change. Underfitting, in contrast, leads to a small
variability of the prediction loss because the fitted model captures comparably
few properties of the training data.

The red solid line in Figure 4.5(b) shows the expected (average) prediction
loss J̄ in (4.23) as a function of λ. While a model of degree λ = 4 performed
best for the particular training data used in (a), models of degree λ = 3 yield
the best performance on average. We see that there is here a difference between
the generalisation performance of a specific fitted model and the generalisation
performance of a model-family across different training sets, which reflects the
general difference between J (ĥλ) and J̄ (Aλ) discussed in Section 4.2.1.

Generalisation Performance and the Size of the Training Data

The results so far were obtained for training sets of size n = 20. We saw that
flexible models tended to overfit the training data, so that there was stark differ-
ence between training and prediction performance. Here, we illustrate how the
size of the training data influences the generalisation performance.

Figure 4.6 shows the expected training and prediction loss as a function of
the size n of the training data for polynomial models of different degree. We can
generally see that the training and prediction loss approach each other as the
sample size increases. Note that they may generally not reach the same limit
as n increases because the training and prediction loss functions L and L, for
example, may not be the same.

Data Mining and Exploration, Spring 2021

60 Predictive Modelling and Generalisation

degree of the polynomial

0 1 2 3 4 5

lo
s
s

0

2

4

6

8

10

12

14

16

training loss

prediction loss

(a) Single training set

degree of the polynomial

0 1 2 3 4 5

lo
s
s

0

1

2

3

4

5

6

7

8

9

10
training loss for different training sets

expected training loss

prediction loss for different training sets

expected prediction loss

(b) Distribution over training sets

Figure 4.5: Training versus prediction performance of different prediction models.

Figure 4.6(a) shows that increasing the model complexity decreases the pre-
diction loss for the models of degree zero and one. Moreover, their prediction
loss does not decrease below a certain level even if the size of the training data
increases. Both phenomena are a sign of underfitting.

Figure 4.6(b) shows the average training and prediction loss for the polynomial
model of degree five. In this example, the large difference between training and
prediction loss for small sample sizes is due to overfitting. As the size of the
training data increases, however, the gap between the two losses becomes smaller,
which means that the amount of overfitting decreases. Generally, the gap should
not be used as an indicator for the amount of overfitting, though. The gap can
also arise due to insufficient training data for fitting the right model. This would
not be overfitting because reducing model complexity would not reduce prediction
loss.

Comparing Figure 4.6(a) and (b) shows us further that even for large samples,
on average, the model of degree five does here not achieve a smaller prediction loss
than the model of degree three. Hence, for this problem, there is no advantage
in using a more complex model than the model of degree three. In general, we
can use model selection to choose among candidate models, or regularisation to
avoid overfitting flexible models on small training data. Both model selection
and choosing the right amount of regularisation correspond to hyperparameter
selection.

4.3 Estimating the Generalisation Performance

We typically need to estimate the generalisation performance twice: Once for
hyperparameter selection, and once for final performance evaluation. We first
discuss two methods for estimating the generalisation performance and then apply
them to the two aforementioned tasks.

Data Mining and Exploration, Spring 2021

4.3 Estimating the Generalisation Performance 61

size of training data

0 100 200 300 400 500 600

a
v
e
ra

g
e
 l
o
s
s

0

0.5

1

1.5

2

2.5

3

3.5

4

training loss, degree 0

training loss, degree 1

training loss, degree 3

prediction loss, degree 0

prediction loss, degree 1

prediction loss, degree 3

(a) Polynomials of degree zero, one, and three

size of training data

0 100 200 300 400 500 600

a
v
e
ra

g
e
 l
o
s
s

0

0.5

1

1.5

2

2.5

3

3.5

4

training loss, degree 5

prediction loss, degree 5

(b) Polynomial of degree five

Figure 4.6: Average training versus average prediction performance for different
sizes of the training data.

4.3.1 Methods for Estimating the Generalisation Performance

The hold-out and the cross-validation approach to estimate the generalisation
performance are presented.

Hold-out Approach

Assume that the prediction function ĥ has been obtained using training data
Dtrain, i.e.

ĥ = A(Dtrain). (4.30)

If another data set D̃ is available with ñ samples (x̃i, ỹi) ∼ p(x, y) that are
statistically independent from the samples in Dtrain, we can use D̃ to estimate
the prediction loss J (ĥ) via a sample average

Ĵ (ĥ; D̃) =
1

ñ

ñ∑
i=1

L(ĥ(x̃i), ỹi). (4.31)

Depending on the context, D̃ is called a test or a validation set.
We are typically given the union of the two data sets Dtrain and D̃, and it is

up to us how to split them into the two sets. Common split ratios are n/ñ =
60/40, 70/30, or 80/20. If the number of (hyper) parameters is large, it is better
to increase the ratio so that more data are available for training.

While the splitting is often done randomly, particularly in classification, it is
important that the different values of the target variable (e.g. the class labels)
represented in a balanced way in both Dtrain and D̃. Stratification methods can
be used so that e.g. the classes are present in the same proportions in both Dtrain

and D̃.
The value of the estimated prediction loss in (4.31) may vary strongly for

different hold-out data sets D̃ unless ñ is large. This is often seen as a drawback
of the hold-out approach. Figure 4.7 illustrates the variability that can be intro-
duced by randomly splitting a data set into a training set Dtrain and test set D̃.
Cross-validation is often used to avoid such issues.

Data Mining and Exploration, Spring 2021

62 Predictive Modelling and Generalisation

E
st

im
a
te

d
 p

re
d

ic
ti

o
n
 l
o
ss

Figure 4.7: Possible variability in the estimated prediction loss. (a) The esti-
mated prediction loss for a classification problem with a polynomial prediction
model. (b) Variability induced by random splitting of the available data (392
data points) into training set and test set (here: of equal size). Each curve shows
a different realisation of the random variable Ĵ (ĥ; D̃). Adapted from (James,
Witten, and Hastie, 2016, Figure 5.2).

Cross-validation

Cross-validation consists in randomly dividing the data that are available for
training into K (roughly) equally-sized subsets (folds) D1, . . . ,DK without over-
lap. For the same reasons as in the hold-out approach, we may want to use here
stratification. From the folds, we construct K pairs of training data sets Dtrain

k

and hold-out (validation) sets Dval
k ,

Dtrain
k =

⋃
i 6=k
Di, Dval

k = Dk, (4.32)

as illustrated in Figure 4.8. The K training sets are used to obtain K prediction
functions ĥk,

ĥk = A(Dtrain
k), (4.33)

whose performance Ĵk is evaluated on the data Dval
k that was held-out during

training,
Ĵk = Ĵ (ĥk;Dval

k). (4.34)

The performance Ĵ (ĥk;Dval
k) is computed via (4.31). We are essentially repeat-

ing the hold-out approach K times, each time with different data. The cross-
validation (cv) score CV is then the average of all Ĵk,

CV =
1

K

K∑
i=1

Ĵk. (4.35)

The cv score is sometimes used as an improved version of Ĵ in (4.31). But it
is actually rather an estimate of the expected prediction performance J̄ (A) in
(4.23). The cv score does indeed not depend on a prediction function but on the
prediction algorithm A. This can be more clearly seen when writing

Ĵk = Ĵ (ĥk;Dval
k) = Ĵ

(
A(Dtrain

k);Dval
k

)
(4.36)

Data Mining and Exploration, Spring 2021

4.3 Estimating the Generalisation Performance 63

Data

TrainingValidation

Figure 4.8: Sketch of K-fold cross-validation for K = 5.

so that

CV =
1

K

K∑
i=1

Ĵk =
1

K

K∑
i=1

Ĵ
(
A(Dtrain

k);Dval
k

)
, (4.37)

which does depend on the algorithm A but not on a particular prediction function

ĥ. The cv score is thus an estimate of J̄ (A) that we denote by ˆ̄J (A),

ˆ̄J (A) = CV. (4.38)

The cross-validation score CV, and hence the estimate of J̄ , depends on the
particular assignment of the data points into the K folds, so that the score is a
random variable. One can assess its distribution by performing cross-validation
several times but this tends to be a computationally expensive procedure.

Alternatively, if K is not too large, e.g. K = 5, one can assess the variability
of the cv-score by estimating its variance as

Var(CV) ≈ 1

K
Var(Ĵ), Var(Ĵ) ≈ 1

K

K∑
k=1

(Ĵk − CV)2. (4.39)

We have here approximations because the formulae assume statistical indepen-
dence of the Ĵk, which is not the case as they were all computed from the same
data. The square root of Var(CV) is called the standard error of the cv-score.

The value of K is a tuning parameter. A typical choice is K = 5, so that the
training sets Dtrain

k consist of 4/5 of all data points available and the validation
sets Dval

k of 1/5 of them. If the validation sets consist of one data point only,
the method is called leave-one-out cross-validation (LOOCV). While generally
very expensive, for some problems, the computation can be done quickly. For
a further discussion of the choice of K, see e.g. Section 7.10 in the textbook by
Hastie, Tibshirani, and Friedman (2009).

Data Mining and Exploration, Spring 2021

64 Predictive Modelling and Generalisation

4.3.2 Hyperparameter Selection and Performance Evaluation

We consider a scenario where we have several prediction models hλ(x;θ) that we
can possibly use for solving our prediction task, and that we need to select among
them. An algorithm that depends on the hyperparameters λ will be denoted by
Aλ. Two approaches to hyperparameter selection and performance evaluation
of the final prediction function are presented: The first uses hold-out data to
select the hyperparameters and hold-out data for performance evaluation while
the second uses cross-validation for hyperparameter selection and hold-out data
for performance evaluation.

Two Times Hold-out

This approach to hyperparameter selection and performance evaluation proceeds
as follows:

1. From all the data D that are available to us, we split off some test data
Dtest to estimate the performance of our final prediction function ĥ. The
test data will never be touched until the final performance evaluation. A
typical size of the test data is 20% of D.

2. We split the remaining data into a training set Dtrain and a validation set
Dval, using, for example, again the 80/20 ratio (Dtrain contains 80% of the
data that remain after the initial splitting while Dval contains 20% of them).

3. Running an algorithm with hyperparameters λ on Dtrain returns a set of
functions

ĥλ = Aλ(Dtrain) (4.40)

indexed by the hyperparameters λ.

4. We evaluate the performance of ĥλ on Dval by computing the estimated
prediction loss PL(λ)

PL(λ) = Ĵ (ĥλ;Dval), (4.41)

where Ĵ is defined in (4.31). We choose λ by minimising PL(λ),

λ̂ = argmin
λ

PL(λ). (4.42)

5. Using λ̂, we re-estimate the parameters θ on the union of the training and
validation data Dtrain ∪ Dval. By using more data, we can estimate the
prediction model more accurately. Denote the resulting prediction function
by ĥ,

ĥ = Aλ̂(Dtrain ∪ Dval). (4.43)

6. We take the test data Dtest out of the vault to compute an estimate Ĵ of
the prediction loss of ĥ,

Ĵ = Ĵ (ĥ;Dtest), (4.44)

using (4.31).

Data Mining and Exploration, Spring 2021

4.3 Estimating the Generalisation Performance 65

7. We re-estimate ĥ using all data available,

ĥ(x) = Aλ̂(D), (4.45)

which provides us with the final prediction function ĥ. An estimate of its
generalisation performance is given by Ĵ in (4.44).

In some cases the re-estimation needs to be skipped because of computational
reasons. Optimisation over the hyperparameters λ is typically not possible by
gradient descent. Grid search can be used if the number of hyperparameters
is small. Alternative methods are random search where different values of the
hyperparameters are randomly tried out (Bergstra and Bengio, 2012), or Bayesian
optimisation where the functional relationship between the hyperparameters and
the prediction loss is modelled via (Gaussian process) regression, which is used
to guide the optimisation (e.g. Snoek, Larochelle, and Adams, 2012).

Cross-validation and Hold-out

In this approach, we choose the hyperparameters by cross-validation and estimate
the prediction performance by a hold-out test set. In more detail, we proceed as
follows:

1. As above, from all the data D that are available to us, we split off some
test data Dtest to estimate the performance our final prediction function ĥ.
The test data will never be touched until the final performance evaluation.
A typical size of the test data is 20% of D.

2. We use the remaining data, call it Dtrain, to compute the cv-score CV as

a function of the hyperparameters. The cv-score is an estimate ˆ̄J of the
expected prediction loss J̄ , see (4.38). Let us denote it by EPL(λ),

EPL(λ) = CV = ˆ̄J (Aλ). (4.46)

3. We choose λ̂ by minimising EPL(λ). Since the cv-score is an estimate
with standard-deviation

√
Var(CV), an alternative method is to choose the

hyperparameters so that they result in the simplest model while still having
a cv-score that is within one standard deviation of the minimal cv-score.

4. Using λ̂, we re-estimate the parameters θ from Dtrain. Denote the resulting
prediction function by ĥ,

ĥ = Aλ̂(Dtrain). (4.47)

5. We take the test data Dtest out of the vault to compute an estimate Ĵ of
the prediction loss of ĥ,

Ĵ = Ĵ (ĥ;Dtest), (4.48)

using (4.31).

Data Mining and Exploration, Spring 2021

66 Predictive Modelling and Generalisation

C
o
u
n
ts

% error

Figure 4.9: Distribution of the minimal cv-score (blue) and true prediction losses
(prediction errors, red) for several artificially generated classification problems
where the true prediction error is 0.5. Sample size was 40 and classification was
done by support-vector machines. The figure is from Varma and Simon (2006),
Figure 2.

6. We re-estimate ĥ using all data available,

ĥ = Aλ̂(D), (4.49)

which provides us with the final prediction function ĥ. An estimate of its
generalisation performance is given by Ĵ in (4.48).

In some cases the re-estimation needs to be skipped because of computational
reasons. Minimisation of the cv-score can typically not be done by gradient de-
scent. As before, gradient-free minimisation methods such as grid search, random
search, or Bayesian optimisation can be used.

Like a training loss, the minimal cv-score is typically an optimistic estimate
of the prediction loss because the hyperparameters are chosen such that the cv-
score is minimised. The prediction loss tends to be underestimated as illustrated
in Figure 4.9. That is why we need the hold-out test data Dtest to determine the
generalisation performance.

4.4 Loss Functions in Predictive Modelling

This section provides a brief overview of loss functions that are widely used in
regression and classification.

Data Mining and Exploration, Spring 2021

4.4 Loss Functions in Predictive Modelling 67

y − ŷ

-4 -2 0 2 4

L
o
s
s

0

1

2

3

4

5

6

7

8

Squared loss

Absolute loss

Huber loss

Figure 4.10: Loss functions that are often used in regression.

4.4.1 Loss Functions in Regression

Typical loss functions L in regression are

L(ŷ, y) =
1

2
(ŷ − y)2 (square loss) (4.50)

L(ŷ, y) = |ŷ − y| (absolute loss) (4.51)

L(ŷ, y) =

{
1
2(ŷ − y)2 if |ŷ − y| < δ

δ|y − ŷ| − 1
2δ

2 otherwise
(Huber loss) (4.52)

Figure 4.10 shows plots of the different loss functions. The absolute loss is more
robust than the square loss since it does not grow as quickly, but it is not dif-
ferentiable when the residual ŷ − y is zero. The Huber loss combines the good
properties of the square and the absolute loss.

4.4.2 Loss Functions in Classification

We distinguish between loss functions that are differentiable with respect to pa-
rameters of the classifier and those that are not.

Non-differentiable Loss Functions

We assume here that y and ŷ can take K different values, for instance {1, . . . ,K}.
This corresponds to classification with K different classes. The loss function

Data Mining and Exploration, Spring 2021

68 Predictive Modelling and Generalisation

L(ŷ, y) can then be represented as a K ×K matrix L,

L =

L(1, 1) L(1, 2) · · · L(1,K)
L(2, 1) L(2, 2) · · · L(2,K)

...
...

...
L(K, 1) L(K, 2) · · · L(K,K)

 . (4.53)

The diagonal elements L(i, i) are zero as they correspond to correct predictions.
The off-diagonal elements L(i, j) are positive; they correspond to the loss incurred
when predicting i instead of j. Since ŷ takes on discrete values, we cannot
compute derivatives with respect to parameters θ that might govern the classifier.

If L(i, j) = 1 for i 6= j and zero otherwise, the loss is said to be the zero-one
loss. Its expectation J (h) equals

J (h) = Ex,y L(h(x), y) (4.54)

= Eŷ,y L(ŷ, y) (4.55)

=
∑
i,j

L(i, j)p(i, j) (4.56)

=
∑
i 6=j

p(i, j) (4.57)

= P (y 6= ŷ) , (4.58)

which is the misclassification or error rate. The term p(i, j) = P(ŷ = i, y = j)
denotes the joint probability of (ŷ, y). The joint probability of (ŷ, y) is induced
by the joint probability of (x, y) and the prediction function h. The p(i, j) for
i 6= j indicate the probabilities that h wrongly predicts i if the true class is j. We
generally want h to be such that these probabilities are small.

If there are only two classes, for example {−1, 1}, the random variables (ŷ, y)
can take four possible values and the predictions are typically called “true pos-
itive”, “false negative”, “false positive”, or “true negative”, see Table 4.1. The
possible conditional probabilities are:

true-positive rate of h: P(ŷ = 1|y = 1) (4.59)

true-negative rate of h: P(ŷ = −1|y = −1) (4.60)

false-positive rate of h P(ŷ = 1|y = −1) = 1− true-negative rate (4.61)

false-negative rate of h: P(ŷ = −1|y = 1) = 1− true-positive rate (4.62)

The probabilities all depend on h since ŷ = h(x). The true-positive rate is also
called sensitivity, hit rate, or recall. Another name for the true-negative rate is
specificity. The false-positive rate is the probability that h wrongly declares a “1”.
It is also called the type 1 error. The false-negative rate is the probability that h
wrongly declares a “-1”. It is also called the type 2 error. While the true-positive
and true-negative rates highlight the benefits of h, measuring what it gets right,
the false-positive and false-negative rates highlight the costs associated with using
h, measuring its errors.

The loss function L(ŷ, y) can be defined such that J (h) penalises false-positive
and false-negative rates. If we let

L =

(
0 1

P(y=1)
1

P(y=−1) 0

)
(4.63)

Data Mining and Exploration, Spring 2021

4.4 Loss Functions in Predictive Modelling 69

ŷ y meaning probability shorthand notation

1 1 true positive P(ŷ = 1, y = 1) p(1, 1)

1 -1 false positive P(ŷ = 1, y = −1) p(1,−1)

-1 1 false negative P(ŷ = −1, y = 1) p(−1, 1)

-1 -1 true negative P(ŷ = −1, y = −1) p(−1,−1)

Table 4.1: Possible events and their probabilities in binary classification.

the expected loss equals the sum of the false-positive and the false-negative rate:

J (h) = Ex,y L(h(x), y) (4.64)

= Eŷ,y L(ŷ, y) (4.65)

=
∑
i,j

L(i, j)p(i, j) (4.66)

=
p(1,−1)

P(y = −1)
+
p(−1, 1)

P(y = 1)
(4.67)

= P(ŷ = 1|y = −1) + P(ŷ = −1|y = 1) (4.68)

Such a cost function can be advantageous over the misclassification rate if there
is, for instance, an imbalance between the probabilities for y = 1 and y = −1.

Minimising either the false-positive or the false-negative rate alone is not a
very meaningful strategy. For example, if we solely minimised the false-positive
rate, the trivial classifier h(x) = ŷ = −1 would be the optimal solution (you
can’t have false-positives if there are no positives). However, for this classifier
the true-positive rate would be zero.

There is generally a trade-off between true-positive and false-positive rates.
This trade-off can be visualised by plotting the false-positive rate, or “cost” of h
versus the true-positive rate, or “benefit” of h, see Figure 4.11. Such a plot is said
to visualise the classifier in the “ROC space”, where ROC stands for “receiver
operating characteristic”.

For classifiers or models with a hyperparameter, the performance of the clas-
sifier in the ROC space traces out a curve as the value of the hyperparameter
is changed. The curve can be used for hyperparameter selection because clas-
sifiers that are located closest to the upper-left corner have the best trade-off
between true-positive and false-positive rate (maximal benefit at the smallest
cost). Classifiers that are located on a line parallel to the diagonal trade a better
true-positive rate against a larger false-positive rate. We may consider such clas-
sifiers to be equivalent and the choice of working with one rather than the other
is problem dependent. The area under the curve in the ROC space can be used to
compare two classifiers or models irrespective of the value of the hyperparameter.

Differentiable Loss Functions in Classification

For simplicity, we consider here binary classification only. Let us assume that
ŷ ∈ {−1, 1} is given by

ŷ(x) = sign(h(x)) (4.69)

Data Mining and Exploration, Spring 2021

70 Predictive Modelling and Generalisation

ROC space

tr
u
e
-p

o
si

ti
v
e
 r

a
te

 (
se

n
si

ti
v
it

y
)

false-positive rate (1-specificity)

Conservative Liberal

Figure 4.11: Plotting the false-positive rate (“cost”) of a classifier versus its
true-positive rate (“benefit”). Classifier B is obtained by setting ŷ = 1 with
probability 0.8 irrespective of the data. Classifier A takes advantage of the data
and its benefit outweighs its cost while classifier C incurs a larger cost than ben-
efit. Adapted from https://en.wikipedia.org/wiki/Receiver_operating_

characteristic

Data Mining and Exploration, Spring 2021

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic

4.4 Loss Functions in Predictive Modelling 71

where h(x) is real-valued.
An input x gets correctly classified if h(x) takes positive values for y = 1 and

negative values for y = −1. That is,

correct classification of x⇐⇒ yh(x) > 0.

The quantity yh(x) is called the margin and it plays a similar role as the residual
y − h(x) in regression. The zero-one loss introduced above can be obtained by
operating on the margin rather than on ŷ. Indeed, the zero-one loss is obtained
for

L(h(x), y) =

{
1 if yh(x) < 0

0 otherwise.
(4.70)

Several loss functions operate on the margin yh(x). Typical ones are:

L(h(x), y) = (h(x)− y)2 = (1− yh(x))2 (square loss) (4.71)

L(h(x), y) = log(1 + exp(−yh(x))) (log loss) (4.72)

L(h(x), y) = exp(−yh(x)) (exponential loss) (4.73)

L(h(x), y) = max(0, 1− yh(x)) (hinge loss) (4.74)

L(h(x), y) = max(0, 1− yh(x))2 (square hinge loss) (4.75)

L(h(x), y) =

{
−4yh(x) if yh(x) < −1

max(0, 1− yh(x))2 otherwise
(Huberised square hinge loss)

(Hastie, Tibshirani, and Friedman, 2009, Section 10.6 and Table 12.1). The dif-
ferent loss functions are visualised in Figure 4.12. Unlike the standard hinge
loss, the square hinge loss is differentiable everywhere. The remaining loss func-
tions are differentiable with respect to h, so that a smoothly parametrised model
h(x;θ) can be optimised by gradient-based optimisation methods. The different
loss functions can be considered to approximate the zero-one loss. Most of them
assign a loss to small positive margins, thus encouraging more confident decisions
about the label. The square loss function is both sensitive to outliers and pe-
nalises large (positive) margins, which can be seen as a key disadvantage of the
loss function.

Minimising the log-loss over a sample of n data points (xi, yi), drawn from
p(x, y), is equivalent to maximising the log-likelihood in logistic regression. In
logistic regression, we model the conditional probabilities of y|x as

P(y = 1|x;h) =
1

1 + exp(−h(x))
P(y = −1|x;h) =

1

1 + exp(h(x))
(4.76)

and estimate h by maximising the log-likelihood

`(h) =
∑

xi:yi=1

logP(yi = 1|xi;h) +
∑

xi:yi=−1

logP(yi = −1|xi;h) (4.77)

= −
∑

xi:yi=1

log (1 + exp(−h(xi)))−
∑

xi:yi=−1

log (1 + exp(h(xi))) (4.78)

= −
∑
xi

log (1 + exp(−yih(xi))) . (4.79)

We can see that `(h) is n times the negated sample average of the log loss.

Data Mining and Exploration, Spring 2021

72 Predictive Modelling and Generalisation

-3 -2 -1 0 1 2 3

margin

0

2

4

6

8

10

12

lo
s
s

zero-one loss

square loss

log loss

exp loss

hinge loss

sq hinge loss

Huberised

sq hinge loss

Figure 4.12: Loss functions that are often used in classification.

References

[1] J. Bergstra and Y. Bengio. “Random Search for Hyper-Parameter Optimiza-
tion”. In: Journal of Machine Learning Research 13 (2012), pp. 281–305.

[2] T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of Statistical
Learning. Springer, 2009.

[3] G. James, D. Witten, and T. Hastie. An Introduction to Statistical Learning:
with Applications in R. 6th ed. Springer, 2016.

[4] J. Snoek, H. Larochelle, and R.P. Adams. “Practical Bayesian Optimiza-
tion of Machine Learning Algorithms”. In: Advances in Neural Information
Processing Systems (NIPS). 2012.

[5] S. Varma and R. Simon. “Bias in error estimation when using cross-validation
for model selection”. In: BMC Bioinformatics 7.91 (2006).

Data Mining and Exploration, Spring 2021

Appendix A

Linear Algebra

The material in this chapter is mostly a refresher of some basic results from linear
algebra. But it also contains some proofs of results that may be harder to find.
The proofs are not examinable.

A.1 Matrices

A m × n matrix A is a m × n array of numbers arranged into m rows and n
columns. The element at row i and column j is denoted by aij so that

A =

a11 a12 . . . a1n
...

...
am1 am2 . . . amn

 . (A.1)

We will sometimes use the indexing notation (A)ij to refer to element aij . The
transpose A> of a matrix A is the matrix where the entries of A are mirrored at
the diagonal, i.e. (A>)ij = (A)ji. If A> = A, the matrix is said to be symmetric.

Multiplying a matrix with a scalar produces a matrix where each element is
scaled by said scalar, for example

αA =

αa11 αa12 . . . αa1n
...

...
αam1 αam2 . . . αamn.

 (A.2)

Two matrices of the same size can be added together by adding their correspond-
ing elements, for example

A+B =

a11 a12 . . . a1n
...

...
am1 am2 . . . amn

+

 b11 b12 . . . b1n
...

...
bm1 bm2 . . . bmn

 (A.3)

=

 a11 + b11 a12 + b12 . . . a1n + b1n
...

...
am1 + bm1 am2 + bm2 . . . amn + bmn.

 (A.4)

74 Linear Algebra

If matrix A has size m × n and matrix B size n × p, the two matrices can be
multiplied together. The results is a m × p matrix C = AB whose elements
(C)ij = cij are given by

(C)ij =

n∑
k=1

(A)ik(B)kj , or, equivalently, cij =

n∑
k=1

aikbkj . (A.5)

The equations mean that to compute the (ij)-th element of C, we multiply the
elements of the i-th row of A with the elements of the j-th column of B and sum
them all up.

The trace of a m×m matrix A is the sum of its diagonal elements,

trace(A) =

m∑
i=1

aii. (A.6)

The trace of AB equals the trace of BA: Let A be m × n and B n ×m. We
then have

trace(AB) =
m∑
i=1

(AB)ii =
m∑
i=1

 n∑
j=1

aijbji

 =
n∑
j=1

m∑
i=1

bjiaij , (A.7)

which equals
∑n

j=1(BA)jj and hence

trace(AB) = trace(BA) (A.8)

as claimed.

A.2 Vectors

A n-dimensional vectors v can be seen as n×1 matrix. We denote its i-th element
by vi or sometimes also by (v)i. By default, v is a column vector, i.e.

v =

v1
...
vn

 . (A.9)

It’s transpose v> is the row vector (v1, . . . , vn). Like matrices, vectors can be
scaled, added or multiplied together. The product between a 1× n (row) vector
r and a n× 1 (column) vector v is with (A.5) a number equal to

rv =
n∑
i=1

rivi. (A.10)

The inner product or scalar product u>v between two n dimensional vectors u
and v is

u>v =

n∑
i=1

uivi, (A.11)

Data Mining and Exploration, Spring 2021

A.3 Matrix Operations as Operations on Column Vectors 75

that is, the vector u is first transposed to be row vector after which (A.5) is
applied. Importantly, it does not matter whether u or v is transposed, i.e.

u>v = v>u. (A.12)

The outer product uv> between a m dimensional vector u and a n dimensional
vector v is a m× n matrix

uv> =

u1

u2
...
um

(v1 v2 . . . vn
)

=

u1v1 u1v2 . . . u1vn
u2v1 u2v2 . . . u2vn

...
...

...
umv1 umv2 . . . umvn

 . (A.13)

It can be seen that the (i, j)-th element of the matrix is equal to uivj in line with
(A.5).

Equation (A.5) also tells us that the product between a m× n matrix A and
n-dimensional vector u equals a m-dimensional vector v with elements vi,

vi =
n∑
j=1

aijuj i = 1, . . . ,m. (A.14)

A.3 Matrix Operations as Operations on Column Vec-
tors

It is often helpful to consider a m×n matrix A as a collection of n column vectors
aj of dimension m that are arranged next to each other,

A = (a1, . . . ,an). (A.15)

Note that the i-th element of the j-th column of A is (A)ij = (aj)i.

A.3.1 Matrix-vector Products

By computing the i-th element, we see that v = Au can be written as weighted
combination of the column vectors aj ,

Au =

n∑
j=1

ajuj =

a11
...

am1

︸ ︷︷ ︸

a1

u1 + . . .+

a1j
...

amj

︸ ︷︷ ︸

aj

uj + . . .+

a1n
...

amn

︸ ︷︷ ︸

an

un, (A.16)

The equation shows that for vectors u that are zero everywhere but in slot k,
Au = akuk, which means that we can “pick” column k of A by multiplying the
matrix with the k unit vector.

Data Mining and Exploration, Spring 2021

76 Linear Algebra

A.3.2 Matrix-matrix Products

Products between matrices can also be written in terms of operations on the
column vectors. Let B be a n× p matrix with column vectors bi ∈ Rn,

B = (b1, . . . , bp). (A.17)

By computing the (i, j)-th element, we see that AB can be written as a collection
of column vectors Abj ,

AB = (Ab1, . . . ,Abp). (A.18)

Indeed, the i-th element of the j-th column is (Abj)i and

(Abj)i =
n∑
k=1

(A)ik(bj)k =
n∑
k=1

(A)ik(B)kj , (A.19)

which equals (AB)ij .
Assume for a moment that matrix B is zero everywhere but in a r × r block

in the upper left,

B =

b1

. . . 0

br

0 0

 (A.20)

That is, the first r column vectors bj are zero everywhere but in slot j where they
equal bj , i.e. b1 = (b1, 0, . . .)

>, b2 = (0, b2, 0, . . .)
> and so on, and the remaining

column vectors br+1, . . . , bp are all zero. From (A.18) and (A.16), it follows that

AB = (b1a1, b2a2, . . . , brar,0, . . . ,0). (A.21)

This shows that we can weigh each column vector of the matrix A, or set it to
zero, by multiplying it with a matrix that is zero everywhere but in the first r
diagonal elements.

For matrix partitions A, B, C, D, the following identity for the inverse of a
partitioned matrix holds:(

A B
C D

)−1

=

(
M −MBD−1

−D−1CM D−1 +D−1CMBD−1

)
, (A.22)

where

M = (A−BD−1C)−1. (A.23)

A.3.3 Outer Product Representation of a Matrix-matrix Prod-
uct

Assume we want to compute the matrix productAB> whereA is m×n as before
but B is p× n. Let us denote the n columns of B by bj ∈ Rp,

B = (b1, . . . , bn). (A.24)

Data Mining and Exploration, Spring 2021

A.4 Orthogonal Basis 77

From (A.5), we know that

(AB>)ij =
n∑
k=1

(A)ik(B
>)kj =

n∑
k=1

(A)ik(B)jk (A.25)

We now show that AB> can also be written as sum of outer products between
the column vectors of A and B,

AB> =
n∑
k=1

akb
>
k . (A.26)

This identity can be verified by computing the (i, j)-th element of the matrix on
the right-hand-side: (

n∑
k=1

akb
>
k

)
i,j

=
n∑
k=1

(
akb

>
k

)
i,j

(A.27)

=
n∑
k=1

(ak)i(bk)j . (A.28)

Since (ak)i is the i-th element of the k-th column of A, we have (ak)i = (A)ik.
For the same reason, (bk)j = (B)jk, so that (ak)i(bk)j = (A)ik(B)jk and(

n∑
k=1

akb
>
k

)
i,j

=
n∑
k=1

(A)ik(B)jk, (A.29)

which equals (A.25) and thus proves the identity in (A.26).

A.4 Orthogonal Basis

Two vectors u1 ∈ Rn and u2 ∈ Rn are said to be orthogonal if their inner product
(scalar product) u>1 u2 is zero. If additionally the vectors are of unit norm, i.e.

||ui|| =
√
u>i ui = 1, i = 1, 2, (A.30)

the vectors are said to be orthonormal. A set of n orthonormal vectors ui ∈ Rn
forms an orthogonal basis of Rn. This means that any vector x ∈ Rn can be
written as a weighted combinations of the u1, . . . ,un,

x =
n∑
i=1

ciui. (A.31)

The weights ci are the coordinates of x with respect to the basis. Due to the
orthogonality of the ui, the coordinates ci can be computed via an inner product
between the ui and x,

ci = u>i x, i = 1, . . . , n, (A.32)

We can form a matrix U by putting all the orthonormal basis vectors next to
each other as the columns of the matrix,

U = (u1, . . . ,un). (A.33)

Data Mining and Exploration, Spring 2021

78 Linear Algebra

The matrix U is said to be an orthogonal matrix. Since the vectors ui have unit
norm and are orthogonal to each other, we have that U>U = In where In is the
n-dimensional identity matrix.

Collecting all coordinates ci into the vector c = (c1, . . . , cn)>, we have with
(A.32)

c = U>x. (A.34)

With (A.16), we can similarly write (A.31) more compactly as

x = Uc. (A.35)

It follows that x = UU>x, from where we see that not only U>U = In but also
UU> = In for orthogonal matrices U .

A.5 Subspaces

An orthogonal basis u1, . . . ,un enables us to represent any vector x ∈ Rn as a
weighted combination of the vectors. If we do not have n orthonormal vectors
but only k of them, e.g. u1, . . . ,uk, we cannot represent all n-dimensional vectors
but only those vectors z ∈ Rn that can be written as

z =
k∑
i=1

aiui, ai ∈ R. (A.36)

This set of vectors is said to be spanned by the u1, . . .uk and denoted by
span(u1, . . .uk). In other words,

span(u1, . . .uk) = {z ∈ Rn : z =
k∑
i=1

aiui}. (A.37)

If z1 ∈ span(u1, . . .uk) and z2 ∈ span(u1, . . .uk), i.e. if

z1 =

k∑
i=1

aiui, z2 =

k∑
i=1

biui, (A.38)

their weighted sum αz1 + βz2 equals

αz1 + βz2 =
k∑
i=1

αaiui +
k∑
i=1

βbiui =
k∑
i=1

(αai + βbi)ui (A.39)

and thus belongs to span(u1, . . .uk) as well. This means that the span is closed
under addition and scalar multiplication, which makes it a subspace of Rn. Since
any vector z of span(u1, . . .uk) can be expressed using k coordinates only, namely
the u>i z, i = 1, . . . k, span(u1, . . .uk) is a k-dimensional subspace of Rn.

We now show that any vector x ∈ Rn can be split into a part x‖ that belongs
to span(u1, . . .uk) and a part x⊥ that belongs to span(uk+1, . . .un), the span of
the remaining basis vectors uk+1, . . . ,un. Since

x =

n∑
j=1

ujcj =

k∑
j=1

ujcj +

n∑
j=k+1

ujcj (A.40)

Data Mining and Exploration, Spring 2021

A.6 Orthogonal Projections 79

we have that

x = x‖ + x⊥, x‖ =

k∑
j=1

ujcj , x⊥ =

n∑
j=k+1

ujcj . (A.41)

As x‖ is a weighted sum of the u1, . . .uk, and x⊥ a weighted sum of the uk+1, . . .un,
the vectors x‖ and x⊥ are orthogonal to each other. The subspace span(uk+1, . . .un)

is said to be orthogonal to span(u1, . . .uk) and is thus also denoted by span(u1, . . .uk)
⊥.

A.6 Orthogonal Projections

Let us collect the k vectors uk into the n× k matrix Uk,

Uk = (u1, . . . ,uk). (A.42)

Since the uk are orthonormal, U>k Uk = Ik, but, unlike for orthogonal matrices,
UkU

>
k is not the identity matrix. We next show that UkU

>
k x equals the part x‖

of x that belongs to the k-dimensional subspace span(u1, . . .uk).
This can be most easily seen by writingUkU

>
k as a sum of elementary matrices

uiu
>
i ,

UkU
>
k =

k∑
i=1

uiu
>
i , (A.43)

which we can do according to (A.26). Applying UkU
>
k on a vector x thus gives

UkU
>
k x

(A.43)
=

k∑
i=1

uiu
>
i x (A.44)

(A.31)
=

k∑
i=1

uiu
>
i

n∑
j=1

ujcj (A.45)

=

k∑
i=1

ui

n∑
j=1

u>i ujcj (A.46)

=

k∑
i=1

uici (A.47)

(A.41)
= x‖, (A.48)

where we have used that u>i uj equals zero unless j = i. The mapping of x to
UkU

>
k x = x‖ is called the orthogonal projection of x onto span(u1, . . .uk). It

follows that (Id −UkU>k)x equals x⊥, and that the matrix (Id −UkU>k) is the
orthogonal projection of x onto span(u1, . . .uk)

⊥.

A.7 Singular Value Decomposition

The singular value decomposition (SVD) of a m×n matrix A is the factorisation
of the matrix into the product USV >,

A = USV >, (A.49)

Data Mining and Exploration, Spring 2021

80 Linear Algebra

The m×n matrix S is zero everywhere but in the first r diagonal elements (S)ii
that are positive. We denote the (S)ii by si so that

S =

s1

. . . 0
sr

0 0

 (A.50)

The diagonal elements are called the singular values ofA and are typically ordered
so that s1 ≥ s2 ≥ · · · ≥ sr. Matrices U and V are both orthogonal. We denote
the column vectors of the two matrices correspondingly by ui and vi,

U = (u1, . . . ,um), V = (v1, . . . ,vn). (A.51)

The vectors ui and vi form an orthogonal basis for Rm and Rn, and are called
the left-singular vectors and right-singular vectors, respectively. The number
r ≤ min(m,n) is called the rank of the matrix A.

Due to the structure of the matrix S only the ui and vi with i ≤ r actually
contribute to the factorisation. Indeed, with (A.21), the m×n matrix US equals

US = (s1u1, . . . , srur,0, . . . ,0). (A.52)

and with (A.26), USV > is

USV > =

r∑
i=1

siuiv
>
i +

n∑
i=r+1

0v>i (A.53)

so that A = USV > is

A =

r∑
i=1

siuiv
>
i = UrSrV

>
r (A.54)

where

Ur = (u1, . . . ,ur), Sr =

s1

. . .

sr

 , Vr = (v1, . . . ,vr). (A.55)

This is called the compact, “thin”, or “skinny” SVD of A.

A.8 Eigenvalue Decomposition

The eigenvalue decomposition is a factorisation for symmetric matrices. The
eigenvalue decomposition of the symmetric m×m matrix A of rank r is

A = UΛU>, (A.56)

where Λ is a m × m diagonal matrix with r non-zero elements λi that we can
assume to be ordered as λ1 ≥ λ2 ≥ · · · ≥ λr. Note that the λi may be positive

Data Mining and Exploration, Spring 2021

A.9 Positive Semi-definite and Definite Matrices 81

or negative. Matrix U is orthogonal with orthonormal column vectors ui. As for
the SVD, the vectors ui for which (Λ)ii = 0 can actually be ignored so that

A =
r∑
i=1

λiuiu
>
i = UrΛrU

>
r , (A.57)

where

Ur = (u1, . . . ,ur), Λr =

λi . . .

λr

 (A.58)

The vectors ui are called the eigenvectors and the λi the eigenvalues. It follows
from (A.57) that

Auk = λkuk, (A.59)

i.e. the matrix A only scales the vectors ui by their corresponding eigenvalue λi.

A.9 Positive Semi-definite and Definite Matrices

A symmetric m × m matrix is called positive semi-definite if all m eigenvalues
are non-negative and positive definite if they are all positive. A positive definite
matrix has full rank, r = m, and the eigenvectors u1, . . . ,um form an orthogonal
basis of Rm.

If a matrix M has the singular value decomposition M = UrSrV
>
r as in

(A.54), the eigenvalue decomposition of MM> is

MM> = UrSr V
>
r Vr︸ ︷︷ ︸
Ir

SrU
>
r = UrS

2
rU
>
r , (A.60)

on the other hand, the eigenvalue decomposition of M>M is

M>M = VrSrU
>
r Ur︸ ︷︷ ︸
Ir

SrV
>
r = VrS

2
rV
>
r , (A.61)

where in both cases S2
r refers to the diagonal matrix with elements s2

i . Both
M>M and MM> have the s2

i as eigenvalues. We see that the eigenvalues are
non-negative so that M>M and MM> are positive semi-definite matrices.

A.10 Matrix Approximations

A.10.1 Low Rank Approximation of General Matrices

The singular value decomposition allows us to decompose a m × n matrix A of
rank r as

A =

r∑
i=1

siuiv
>
i = UrSrV

>
r , (A.62)

see (A.54). The r singular values si > 0 are decreasing. Intuitively, the “later”
rank-one matrices uiv

>
i with smaller singular values contribute less to A than

Data Mining and Exploration, Spring 2021

82 Linear Algebra

the “earlier” rank-one matrices with larger singular values. In fact the best
approximation Â of the matrix A by a matrix Ã of rank k < r is given by the
first k terms of the expansion above,

Â =

k∑
i=1

siuiv
>
i . (A.63)

This result is unique if and only if sk > sk+1. The result is obtained when the
quality of the approximation is measured by the Frobenius norm

||A− Ã||F =
∑
ij

((A)ij − (Ã)ij)
2 (A.64)

but also for other matrix norms (e.g. the spectral norm). For the Frobenius
norm, the error when approximating A with Â is the sum of the squares of the
remaining singular values

∑
ij

((A)ij − (Â)ij)
2 =

r∑
i=k+1

s2
i . (A.65)

This result is known as the Eckart–Young–Mirsky theorem and a proof can be
found in e.g. (Gentle, 2007, Section 3.10) or (Björck, 2015, Theorem 2.2.11).

A.10.2 Low rank Approximation of Positive Semi-definite Ma-
trices

For positive semi-definite matrices, the above approximation based on the sin-
gular value decomposition carries over: The best approximation Â of a positive
semi-definite matrix A of rank r by a matrix Ã of rank k < r is

Â =

k∑
i=1

λiuiu
>
i . (A.66)

The smallest approximation error for the Frobenius norm is

||A− Â||F =
m∑
ij=1

((A)ij − (Â)ij)
2 =

r∑
i=k+1

λ2
i , (A.67)

so that ||A− Ã||F ≥
∑r

i=k+1 λ
2
i for other candidates Ã.

A.10.3 Approximating Symmetric Matrices by Positive Semi-
definite Matrices

A rank r symmetric matrix A that is not positive definite has the eigenvalue
decomposition

A =

r∑
i=1

λiuiu
>
i , (A.68)

where some λi are negative. Let us assume that there are p ≥ 1 positive eigenval-
ues and that λ1 ≥ . . . ≥ λp > 0 > λp+1 ≥ . . . ≥ λr. We would like to determine

Data Mining and Exploration, Spring 2021

A.10 Matrix Approximations 83

the positive semi-definite matrix closest to A. Measuring closeness by the Frobe-
nius norm, a result by Higham (1988) shows that the closest matrix Â is obtained
by retaining the terms with positive eigenvalues only,

Â =

p∑
i=1

λiuiu
>
i =

r∑
i=1

max(λi, 0)uiu
>
i . (A.69)

The approximation error is

||A− Â||F =
r∑

i=p+1

λ2
i , (A.70)

and matrix Â has rank p.

Following (Higham, 1988), the proof exploits that the Frobenius norm is in-
variant under rotations, i.e. ||A||F = ||AU ||F = ||UA||F for any orthogonal
matrix U . Let Ã be a positive semi-definite matrix. We then have

||A− Ã||F = ||UrΛrU
>
r − Ã||F (A.71)

= ||U>r UrΛrU
>
r Ur −U>r ÃUr||F (A.72)

= ||Λr −U>r ÃUr︸ ︷︷ ︸
B

||F (A.73)

=

r∑
i=1

(λi − bii)2 +

r∑
i,j=1
i6=j

b2ij (A.74)

where bij are the elements of the matrix B = U>r ÃUr. Because the b2ij ≥ 0, we
have

||A− Ã||F ≥
r∑
i=1

(λi − bii)2 (A.75)

=

p∑
i=1

(λi − bii)2︸ ︷︷ ︸
≥0

+
r∑

i=p+1

(λi − bii)2 (A.76)

≥
r∑

i=p+1

(λi − bii)2 (A.77)

Since bii ≥ 0 as Ã is restricted to be positive semi-definite and λi < 0 for i > p,
we have in the equation above that λi − bii ≤ λi < 0 and thus (λi − bii)2 ≥ λ2

i .
We thus obtain the following lower bound for ||A− Ã||F :

||A− Ã||F ≥
r∑

i=p+1

λ2
i (A.78)

A diagonal matrix B with elements bi = max(λi, 0) achieves the lower bound.
The result in (A.69) now follows from Ã = UrBU

>
r .

Data Mining and Exploration, Spring 2021

84 Linear Algebra

A.10.4 Low Rank Approximation of Symmetric Matrices by Pos-
itive Semi-definite Matrices

As before let the symmetric matrix A of rank r have p positive eigenvalues,

A =
r∑
i=1

λiuiu
>
i , (A.79)

where λ1 ≥ . . . ≥ λp > 0 > λp+1 ≥ . . . ≥ λr. Combining (A.69) with (A.66) we
show here that the best positive semi-definite approximation of rank k < p is

Â =

k∑
i=1

λiuiu
>
i , (A.80)

and that the smallest approximation error is

||A− Â||F =

r∑
i=k+1

λ2
i . (A.81)

Let Ã be a positive semi-definite matrix of rank k < p. As for the proof of
(A.66), we write

||A− Ã||F = ||UrΛrU
>
r − Ã||F (A.82)

= ||U>r UrΛrU
>
r Ur −U>r ÃUr||F (A.83)

= ||Λr −U>r ÃUr︸ ︷︷ ︸
B

||F (A.84)

=

r∑
i=1

(λi − bii)2 +

r∑
i,j=1
i 6=j

b2ij (A.85)

where bij = u>i Ãuj are the elements of the matrix B = U>r ÃUr. Because the
b2ij ≥ 0, we have

r∑
i,j=1
i6=j

b2ij ≥
p∑

i,j=1
i6=j

b2ij (A.86)

and hence

||A− Ã||F ≥
r∑
i=1

(λi − bii)2 +

p∑
i,j=1
i6=j

b2ij (A.87)

=

p∑
i=1

(λi − bii)2 +

p∑
i,j=1
i6=j

b2ij +
r∑

i=p+1

(λi − bii)2 (A.88)

= ||Λp −U>p ÃUp||F +
r∑

i=p+1

(λi − bii)2 (A.89)

Data Mining and Exploration, Spring 2021

A.10 Matrix Approximations 85

As Ã is restricted to be positive semi-definite bii ≥ 0, and since λi < 0 for i > p,
we have in the equation above that λi − bii ≤ λi < 0 and thus (λi − bii)2 ≥ λ2

i .
Hence:

||A− Ã||F ≥ ||Λp −U>p ÃUp||F +
r∑

i=p+1

λ2
i (A.90)

The matrix Λp is a positive definite p× p matrix, while the matrix U>p ÃUp is a
p × p matrix of rank k. The smallest approximation error of a positive definite
matrix by a matrix of lower rank is with (A.67) equal to

∑p
i=k+1 λ

2
i . We can thus

bound ||A− Ã||F from below by
∑r

i=k+1 λ
2
i ,

||A− Ã||F ≥
r∑

i=k+1

λ2
i . (A.91)

The matrix Â in (A.80) achieves the lower bound which completes the proof.

References

[1] Å Björck. Numerical Methods in Matrix Computations. Springer, 2015.

[2] J.E. Gentle. Matrix Algebra: Theory, Computations, and Applications in
Statistics. Springer, 2007.

[3] N.J. Higham. “Computing a nearest symmetric positive semidefinite ma-
trix”. In: Linear Algebra and its Applications 103 (1988), pp. 103–118.

Data Mining and Exploration, Spring 2021

Appendix B

Proofs Related to PCA

In this chapter, we present two additional proofs on equivalence of PCA formu-
lations. These proofs are optional reading.

B.1 Sequential Maximisation Yields Simultaneous Max-
imisation

A proof that simultaneous and sequential variance maximisation yield the same
solution is given below. As in the sequential approach, we work in the orthogonal
basis provided by the eigenvectors of Σ, i.e.

wi = Uai, (B.1)

so that we can write the optimisation problem as

maximise
a1,...,ak

k∑
i=1

a>i Λai

subject to ||ai|| = 1 i = 1, . . . , k

a>i aj = 0 i 6= j

(B.2)

We see that the k vectors ai are required to be orthonormal. They can be
extended by orthonormal vectors ak+1, . . . ,ad so that the matrix

A = (a1, . . . ,ak,ak+1, . . . ,ad) (B.3)

is orthogonal and thus satisfies AA> = Id. This means that the row vectors of
A have norm one,

d∑
j=1

(A)2
ij = 1, (B.4)

and thus that
k∑
j=1

(A)2
ij ≤ 1. (B.5)

Below, we will denote
∑k

j=1(A)2
ij by bi. Note that

∑d
i=1 bi = k since the column

vectors of A have unit norm.

88 Proofs Related to PCA

Since Λ is a diagonal matrix, the objective in (B.2) can be written as

k∑
j=1

a>j Λaj =
k∑
j=1

d∑
i=1

(aj)
2
iλi =

k∑
j=1

d∑
i=1

(A)2
ijλi. (B.6)

We now show that
∑k

i=1 λi is the maximal sum that can be obtained by any
set of k orthogonal vectors ai. This proves our claim about the solution of the
optimisation problem in (2.27). We start with re-writing

∑k
j=1 a

>
j Λaj as

k∑
j=1

a>j Λaj =
k∑
j=1

d∑
i=1

(A)2
ijλi (B.7)

=
d∑
i=1

k∑
j=1

(A)2
ij︸ ︷︷ ︸

bi

λi (B.8)

=
d∑
i=1

biλi (B.9)

=
k∑
i=1

biλi +
d∑

i=k+1

biλi (B.10)

For i > k, λi ≤ λk, as we assume that the eigenvalues are ordered from large to
small. We thus obtain an upper bound for

∑k
j=1 a

>
j Λaj ,

k∑
j=1

a>j Λaj =

k∑
i=1

biλi +

d∑
i=k+1

biλi (B.11)

≤
k∑
i=1

biλi + λk

d∑
i=k+1

bi. (B.12)

We now write
∑d

i=k+1 bi =
∑d

i=1 bi −
∑k

i=1 bi and use that
∑d

i=1 bi = k, so that

d∑
i=k+1

bi = k −
k∑
i=1

bi (B.13)

and hence

k∑
j=1

a>j Λaj ≤
k∑
i=1

biλi + kλk −
k∑
i=1

biλk (B.14)

=

k∑
i=1

bi(λi − λk) + kλk. (B.15)

Data Mining and Exploration, Spring 2021

B.2 Equivalence to PCA by Variance Maximisation 89

Since λi−λk ≥ 0 for i ≤ k and 0 ≤ bi ≤ 1 we have bi(λi−λk) ≤ (λi−λk) so that

k∑
j=1

a>j Λaj ≤
k∑
i=1

(λi − λk) + kλk (B.16)

=
k∑
i=1

λi −
k∑
i=1

λk + kλk (B.17)

=
k∑
i=1

λi − kλk + kλk, (B.18)

from where the desired result follows:

k∑
j=1

a>j Λaj ≤
k∑
i=1

λi. (B.19)

The upper bound is achieved if aj is the j-th unit vector, i.e. if a1 = (1, 0, . . .)>,
a2 = (0, 1, 0, . . .)>, . . ., that is, if wi = uj . They are the unique solution if there
are not ties in the first eigenvalues, i.e. if λ1 > · · · > λk > λk+1.

B.2 Equivalence to PCA by Variance Maximisation

To prove the equivalence of (2.27) and (2.29), we first write
∑k

i=1wiw
>
i x more

compactly as WkW
>
k x and expand the norm of the approximation error,

||x−WkW
>
k x||2 = (x−WkW

>
k x)>(x−WkW

>
k x) (B.20)

= x>x− 2x>WkW
>
k x+ x>WkW

>
k Wk︸ ︷︷ ︸
Ik

W>
k x (B.21)

= x>x− x>WkW
>
k x (B.22)

Using again that WkW
>
k =

∑k
i=1wiw

>
i , we obtain

||x−WkW
>
k x||2 = x>x− x>

(
k∑
i=1

wiw
>
i

)
x (B.23)

= x>x−
k∑
i=1

(x>wi)(w
>
i x) (B.24)

= x>x−
k∑
i=1

w>i xx
>wi (B.25)

and the expected approximation error is

E ||x−WkW
>
k x||2 = E[x>x]− E

[
k∑
i=1

w>i xx
>wi

]
(B.26)

= E[x>x]−
k∑
i=1

w>i E[xx>]wi (B.27)

Data Mining and Exploration, Spring 2021

90 Proofs Related to PCA

due to the linearity of the expectation. As we assume that the expected value
E[x] is zero, due to the centring, we have Σ = E[xx>] and

E ||x−WkW
>
k x||2 = E[x>x]−

k∑
i=1

w>i Σwi. (B.28)

Since E[x>x] is a constant, minimising the expected approximation error is equiv-
alent to maximising

∑k
i=1w

>
i Σwi, which is the total variance of the projections

w>i x and the objective in (2.27). The constraints in (2.29) and (2.27) are also
the same so that the two optimisation problems are equivalent.

Data Mining and Exploration, Spring 2021

	Contents
	Preface
	First Steps in Exploratory Data Analysis
	Numerical Data Description
	Data Visualisation
	Data Pre-Processing

	Principal Component Analysis
	PCA by Variance Maximisation
	PCA by Minimisation of Approximation Error
	PCA by Low Rank Matrix Approximation
	Probabilistic PCA

	Dimensionality Reduction
	Linear Dimensionality Reduction
	Dimensionality Reduction by Kernel PCA
	Multidimensional Scaling
	Isomap
	UMAP

	Predictive Modelling and Generalisation
	Prediction and Training Loss
	Generalisation Performance
	Estimating the Generalisation Performance
	Loss Functions in Predictive Modelling

	Linear Algebra
	Matrices
	Vectors
	Matrix Operations as Operations on Column Vectors
	Orthogonal Basis
	Subspaces
	Orthogonal Projections
	Singular Value Decomposition
	Eigenvalue Decomposition
	Positive Semi-definite and Definite Matrices
	Matrix Approximations

	Proofs Related to PCA
	Sequential Maximisation Yields Simultaneous Maximisation
	Equivalence to PCA by Variance Maximisation

