# Data Intensive Linguistics — Lecture 19 Machine translation (VI): Advanced Topics

Philipp Koehn

16 March 2006

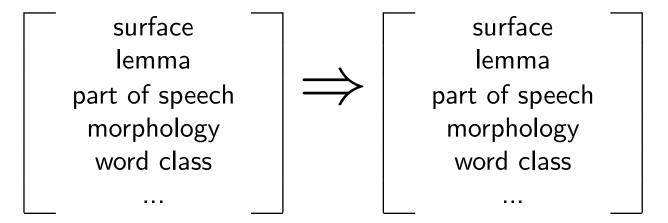




## Statistical machine translation today

- Best performing methods based on *phrases*
  - short sequences of words
  - no use of explicit syntactic information
  - no use of morphological information
  - currently best performing method
- Progress in syntax-based translation
  - tree transfer models using syntactic annotation
  - still no use of morphological information
  - slower, more complex, and lower translation quality
  - active research, closing the performance gap?




## Morphology for machine translation

- Models treat car and cars as completely different words
  - training occurrences of *car* have no effect on learning translation of *cars*
  - if we only see *car*, we do not know how to translate *cars*
  - rich morphology (German, Arabic, Finnish, Czech, ...)  $\rightarrow$  many word forms
- Better approach
  - analyze surface word forms into lemma and morphology, e.g.: car +plural
  - translate lemma and morphology separately
  - generate target surface form



#### **Factored translation models**

Factored represention of words



- Goals
  - Generalization, e.g. by translating lemmas, not surface forms
  - Richer model, e.g. using syntax for reordering, language modeling)



## Decomposing translation: example

• *Translate* lemma and syntactic information *separately* 

|   | <br>lemma | $\Rightarrow \Box$ lemma |  |
|---|-----------|--------------------------|--|
| ┖ |           |                          |  |

 part-of-speech
 ⇒
 part-of-speech

 morphology
 ⇒
 morphology



# Decomposing translation: example

• Generate surface form on target side

| surface        |  |
|----------------|--|
| <u> </u>       |  |
| lemma          |  |
| part-of-speech |  |
| morphology     |  |



#### **Translation process**

- Extension of phrase model
  - translation step is one-to-one mapping of word sequences
- Mapping of foreign words into English words broken up into steps
  - translation step: maps foreign factors into English factors
  - generation step: maps English factors into English factors
- Order of mapping steps is chosen to optimize search



#### Translation process: example

Input: (Autos, Auto, NNS)

- 1. Translation step: lemma  $\Rightarrow$  lemma (?, car, ?), (?, auto, ?)
- 2. Generation step: lemma  $\Rightarrow$  part-of-speech (?, car, NN), (?, car, NNS), (?, auto, NN), (?, auto, NNS)
- 3. Translation step: part-of-speech  $\Rightarrow$  part-of-speech (?, car, NN), (?, car, NNS), (?, auto, NNP), (?, auto, NNS)
- 4. Generation step: lemma,part-of-speech  $\Rightarrow$  surface (car, car, NN), (cars, car, NNS), (auto, auto, NN), (autos, auto, NNS)

Philipp Koehn DIL Lecture 19 16 March 2006



#### Integration with factored language models

- Factored language models: back-off to factors with richer statistics
  - if preceding word is rare, current word hard to predict
  - → back-off to part-of-speech tags
- Example
  - count(scotland is) = count(scotland fish) = count(scotland yellow) = 0
  - count(NNP is) > count(NNP fish) > count(NNP yellow)
- Gains shown for speech recognition and translation



#### Richer models for machine translation

- Reordering is often due to syntactic reasons
  - French-English: NN ADJ → ADJ NN
  - Chinese-English: NN1 F NN2 → NN1 NN2
  - Arabic-English: VB NN → NN VB
- Syntactic coherence may be modeled using syntactic tags
  - n-gram models of part-of-speech tags may aid grammaticality of output
  - sequence models over morphological tags may aid agreement (e.g., case, number, and gender agreement in noun phrases)

Philipp Koehn DIL Lecture 19 16 March 2006



#### Factored models: open questions

- What is the *best decomposition* into translation and generation steps?
- Same segmentation for all translation steps?
- What information is useful?
  - translation: mostly lexical, or lemmas for richer statistics
  - reordering: syntactic information useful
  - language model: syntactic information for overall grammatical coherence
- Use of annotation tools vs. *automatically discovered* word classes
- Back-off models (use complex mappings, if available)