
Word alignment

- Notion of word alignment valuable
- Shared task at NAACL 2003 and ACL 2005 workshops

DIL Lecture 17

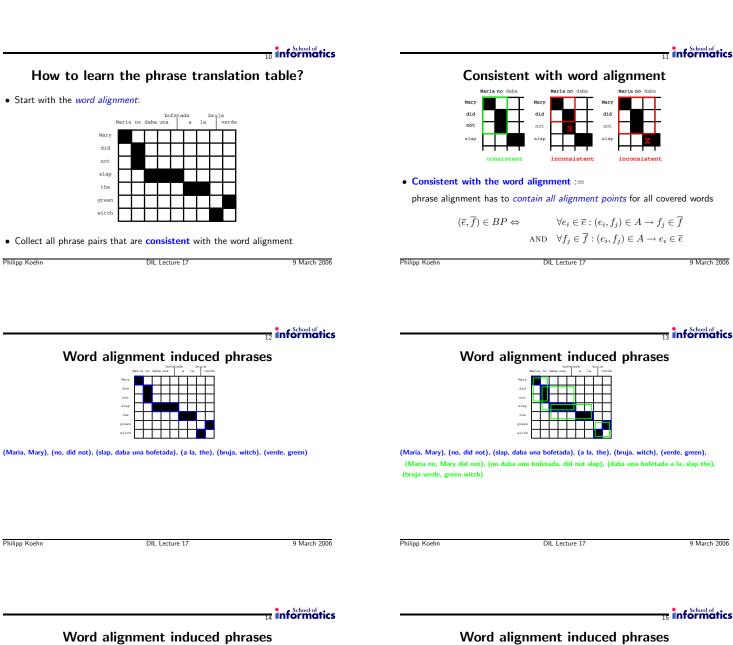
Data Intensive Linguistics — Lecture 17

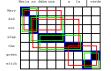
Philipp Koehn

9 March 2006

f informatics

9 March 2006


Phrase translation table



Philipp Koehn

English	$\phi(\mathbf{e} \mathbf{f})$	English	<i>φ</i> (e f)
the proposal	0.6227	the suggestions	0.0114
's proposal	0.1068	the proposed	0.0114
a proposal	0.0341	the motion	0.0091
the idea	0.0250	the idea of	0.0091
this proposal	0.0227	the proposal ,	0.0068
proposal	0.0205	its proposal	0.0068
of the proposal	0.0159	it	0.0068
the proposals	0.0159		

DIL Lecture 17

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green), (Maria no, Mary did not), (no daba una bofetada, did not slap), (daba u na bofetada a la, slap the), (bruja verde, green witch), (Maria no daba una bofetada, Mary did not slap), (no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch)

9 March 2006

(Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bo

(bruja verde, green witch), (Maria no daba una bofetada, Mary did not slap),

(Maria no daba una bofetada a la, Mary did not slap the) (daba una bofetada a la bruja verde, slap the green witch)

(no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch),

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green),

la, slap the),

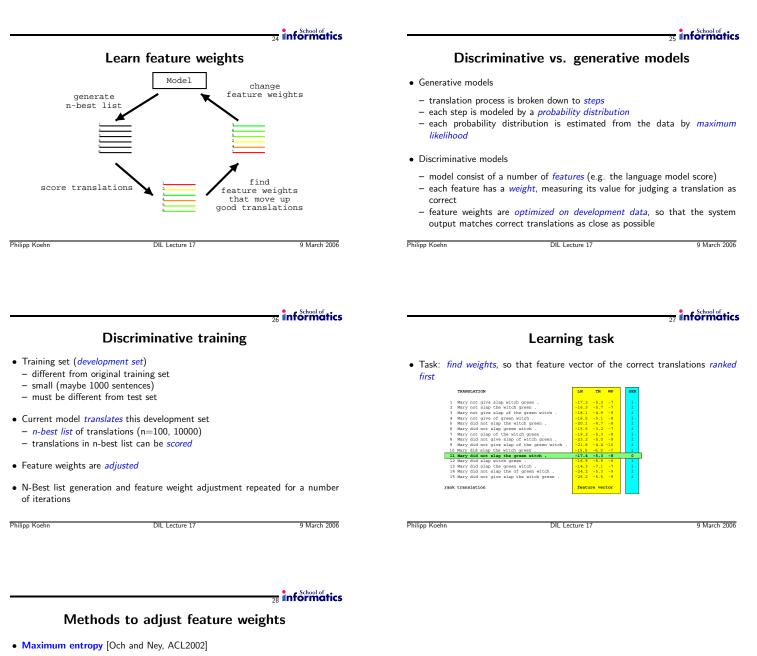
Philipp Koehn

DIL Lecture 17

Advantages of phrase-based translation

DIL Lecture 17

• Many-to-many translation can handle non-compositional phrases


• Use of *local context* in translation

Philipp Koehn

• The more data, the longer phrases can be learned

16 informatics	17 Informatics	
Word alignment induced phrases (5)	Probability distribution of phrase pairs	
Maria no dihakuda a la verde Maria no dihakuda a la verde	• We need a probability distribution $\phi(\overline{f} \overline{e})$ over the collected phrase pairs	
	\Rightarrow Possible <i>choices</i>	
	- <i>relative frequency</i> of collected phrases: $\phi(\overline{f} \overline{e}) = \frac{\text{count}(\overline{f},\overline{e})}{\sum_{\overline{c}} \text{count}(\overline{f},\overline{e})}$	
(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green),	- or, conversely $\phi(\overline{e} \overline{f})$ - use lexical translation probabilities	
(Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the), (bruja verde, green witch). (Maria no daba una bofetada, Mary did not slap),	- use lexical translation probabilities	
(no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch), (Maria no daba una bofetada a la, Mary did not slap the), (daba una bofetada a la bruja verde,		
slap the green witch), (no daba una bofetada a la bruja verde, did not slap the green witch), (Maria no daba una bofetada a la bruja verde, Mary did not slap the green witch)		
Philipp Koehn DIL Lecture 17 9 March 2006	Philipp Koehn DIL Lecture 17 9 March 2006	
18 informatics		
Reordering	Lexicalized reordering models	
-		
Monotone translation do not allow any reordering		
\rightarrow worse translations		
• Limiting reordering (to movement over max. number of words) helps	e4	
Distance-based reordering cost		
– moving a foreign phrase over n words: cost ω^n	[from Koehn et al., 2005, IWSLT]	
Lexicalized reordering model	• Three orientation types: monotone, swap, discontinuous	
	Probability $p(swap e,f)$ depends on foreign (and English) \textit{phrase} involved	
Philipp Koehn DIL Lecture 17 9 March 2006	Philipp Koehn DIL Lecture 17 9 March 2006	
20 informatics	21 informatics	
Learning lexicalized reordering models	Log-linear models	
	• IBM Models provided mathematical justification for factoring components	
	together	
	$p_{LM} \times p_{TM} \times p_D$	
	• These may be <i>weighted</i> $p_{LM}^{\lambda_{LM}} imes p_{TM}^{\lambda_{TM}} imes p_{D}^{\lambda_{D}}$	
Orientation type is <i>learned during phrase extractions</i>		
Alignment point to the top left (monotone) or top right (swap)?	• Many components p_i with weights λ_i $\Rightarrow \prod_{i} \alpha^{\lambda_i} = ern(\sum_{i} \lambda_i log(p_i))$	
• For more, see [Tillmann, 2003] or [Koehn et al., 2005]	$ \Rightarrow \prod_{i} p_{i}^{\lambda_{i}} = exp(\sum_{i} \lambda_{i} log(p_{i})) \Rightarrow log \prod_{i} p_{i}^{\lambda_{i}} = \sum_{i} \lambda_{i} log(p_{i}) $	
Philipp Koehn DIL Lecture 17 9 March 2006	Philipp Koehn DIL Lecture 17 9 March 2006	
Knowledge sources	Set feature weights	
	-	
Many different knowledge sources useful – language model	• Contribution of components p_i determined by weight λ_i	
 reordering (distortion) model 	Methods	
 phrase translation model word translation model 	 manual setting of weights: try a few, take best automate this process 	
 word count phrase count 	Learn weights	
 drop word feature phrase pair frequency 	- set aside a development corpus	
 additional language models additional features 	 set the weights, so that optimal translation performance on this development corpus is achieved 	
	 requires <i>automatic scoring</i> method (e.g., BLEU) 	

DIL Lecture 17

- match expectation of feature values of model and data
- Minimum error rate training [Och, ACL2003]
 - try to rank best translations first in n-best list
 - can be adapted for various error metrics, even BLEU
- Ordinal regression [Shen et al., NAACL2004]
 - separate k worst from the k best translations

Philipp Koehn

DIL Lecture 17

9 March 2006