16 February 2006

informatics

Data Intensive Linguistics — Lecture 12 Text Classification and Clustering

Philipp Koehn

16 February 2006

Philipp Koehn DIL Lecture 11 16 February 2006

DIL Lecture 11

Type of learning problems

- methods: HMM, naive Bayes, maximum entropy, transformation-based

- example: language modeling, POS tagging with labeled corpus

Goals of learning

- Density estimation: p(x)
- learn the distribution of a random variable

- labels have to be automatically discovered - method: clustering (this lecture)

- example: language modeling
- ullet Classification: p(c|x)

• Supervised learning

- labeled training data

• Unsupervised learning

Philipp Koehn

learning, decision lists,

- predict correct class (from a finite set)
- example: part-of-speech tagging, word sense disambiguation
- Regression: p(x,y)
 - predicting a function f(x)=y with real-numbered input and output
- rare in natural languages (words are discrete, not continuous)

DIL Lecture 11 Philipp Koehn 16 February 2006

finformatics

The task

- The task
 - given a set of documents
- sort them into categories
- Example
 - sorting news stories into: POLITICS, SPORTS, ARTS, etc.
 - classifying job adverts into job types: CLERICAL, TEACHING, ...
 - filtering email into SPAM and NO-SPAM

Philipp Koehi DIL Lecture 11 16 February 2006

Language modeling approach

- Collect documents for each class
- ullet Train a language model p_{LM}^c for each class c separately
- Classify a new document d by

 $\mathrm{argmax}_c p_{LM}^c(d)$

- Intuition: which language model most likely produces the document?
- Effectively uses words and n-gram features

nformatics

Semi-supervised learning

- Some of the training data is labeled, vast majority is not
- Boostrapping
 - train initial classifier on labeled data
 - label additional data with initial classifier
 - iterate
- Active learning
 - train initial classifier with confidence measure
 - request from human annotator to label most informative examples

Philipp Koehn DIL Lecture 11 16 February 2006

anformatics

finformatics

Text classification

- Classification problem
- · First, supervised methods
 - the usual suspects
 - classification by language modeling
- Then, unsupervised methods
 - clustering

Philipp Koehr DIL Lecture 11 16 February 2006

The usual approach

- Represent document by features
 - words
 - bigrams, etc.
 - word senses
 - syntactic relations
- Learn a model that predicts a category using the features
 - naive Bayes $arg max_c p(c) \prod_i p(c|f_i)$
 - maximum entropy $\arg\max_{c} \frac{1}{Z} \prod_{i} \lambda_{i}^{f}$
 - decision/transformation rules $\{f_0 \rightarrow c_j, ..., f_n \rightarrow c_k\}$
- Set-up very similar to word sense disambiguation

Philipp Koehn 16 February 2006 DIL Lecture 11 Philipp Koehn DIL Lecture 11 16 February 2006

Clustering

- Unsupervised learning
 - given: a set of documents
 - wanted: grouping into appropriate classes
- Agglomerative clustering
 - group the two most similar documents together
 - repeat

Philipp Koehn

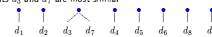
DIL Lecture 11

16 February 2006

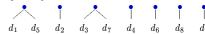
Agglomerative clustering

• Start: 9 documents, 9 classes

ullet Documents d_3 and d_7 are most similar



ullet Documents d_1 and d_5 are most similar



Philipp Koehn DIL Lecture 11 16 February 2006

nformatics

Agglomerative clustering (2)

ullet Documents d_6 and d_8 are most similar

ullet Document d_4 and class $\{d_8,d_6\}$ are most similar

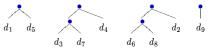


Philipp Koehn DIL Lecture 11 16 February 2006

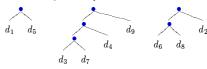
nf School of tics

Agglomerative clustering (3)

ullet Document d_2 and class $\{d_6,d_8\}$ are most similar



ullet Document d_9 and class $\{d_3,d_4,d_7\}$ are most similar

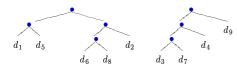


Philipp Koehn DIL Lecture 11 16 February 2006

12 informatics

Agglomerative clustering (4)

ullet Class $\{d_1,d_5\}$ and class $\{d_2,d_6,d_8\}$ are most similar



• If we stop now, we have two classes

13 informatics

Similarity

- We loosely used the concept similarity
- How do we know how similar two documents are?
- How do we represent documents in the first place?

Philipp Koehn DIL Lecture 11 16 February 2006

14 inf^{School of} of tics

Vector representation of documents

DIL Lecture 11

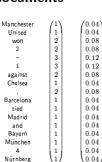
Documents are represented by a **vector of word counts**.

Example document

Philipp Koehn

Manchester United won 2-1 against Chelsea , Barcelona tied Madrid 1-1 , and Bayern München won 4-2 against Nürnberg

The word counts may be **normalized**, so all the vector components add up to one.



61 11

15 informatics

Similarity

• A popular similarity metric for vectors is the cosine

$$\mathrm{sim}(\overrightarrow{x},\overrightarrow{y}) = \frac{\sum_{i=1}^{m} x_i \times y_i}{\sqrt{\sum_{i=1}^{m} x_i} \times \sum_{i=1}^{m} y_i} = \overrightarrow{x} \cdot \overrightarrow{y}$$

- We also need to define the similarity between
- a document and a class
- two classes

 Philipp Koehn
 DIL Lecture 11
 16 February 2006
 Philipp Koehn
 DIL Lecture 11
 16

Similarity with classes

• Single link

- merge two classes based on similarity of their *most* similar members

• Compete link

- merge two classes based on similarity of their *least* similar members

• Group average

- define class vector, or center of class, as

$$\overrightarrow{c} = \frac{1}{M} \sum_{\overrightarrow{x} \in c} \overrightarrow{x}$$

- compare with other vectors using similarity metric

Philipp Koehn DIL Lecture 11 16 February 2006

Other clustering methods

- Top-down hierarchical clustering, or divisive clustering
 - start with one class
 - divide up classes that are least coherent
- K-means clustering
 - create initial clusters with arbitrary center of cluster
 - assign documents to the cluster with the closests center
 - compute center of cluster
 - iterate until convergence

Philipp Koehn DIL Lecture 11 16 February 2006

Additional Considerations

Stop words

- words such as and and the are very frequent and not very informative
- $\boldsymbol{\mathsf{-}}$ we may want to ignore them

Complexity

- at any point in the clustering algorithm, we have to compare every document with every other document
- \rightarrow complexity ${\bf quadratic}$ with the number of documents ${\cal O}(n^2)$
- When do we stop?
 - when we have a pre-defined number of classes
 - when the lowest similarity is higher than a pre-defined threshold

Philipp Koehn DIL Lecture 11 16 February 2006