Data Intensive Linguistics — Lecture 10 Parsing (II): Probabilistic parsing models

Philipp Koehn

9 February 2006

Philipp Koehn DIL Lecture 10

Penn treebank

• Penn treebank: English sentences annotated with syntax trees

- built at the University of Pennsylvania

- real text from the Wall Street Journal

• Similar treebanks exist for other languages

- German - French

- Spanish

- Arabic - Chinese

NP-SBJ

Philipp Koehn

- 40,000 sentences, about a million words

Parsing

- Task: build the syntactic tree for a sentence
- Grammar formalism
 - phrase structure grammar
 - context-free grammar
- Parsing algorithm: CYK (chart) parsing
- Open problems
 - where do we get the grammar from?
 - how do we resolve ambiguities

Philipp Koehn DIL Lecture 10 9 February 2006

nformatics

Sample syntax tree

DIL Lecture 10 Philipp Koehn 9 February 2006

nf School of of of of of of of

anformatics

 $S \rightarrow NP-SBJ VP$

NNP → Vinken $VP \rightarrow VBZ NP-PRD$

 $\mathsf{NP}\text{-}\mathsf{SBJ}\to\mathsf{NNP}\;\mathsf{NNP}$ $\mathsf{NNP} \to \textit{Mr}$

nformatics

Sample tree with part-of-speech

DIL Lecture 10

DIL Lecture 10 Philipp Koehn 9 February 2006

Rules applications to build tree

finformatics

Learning a grammar from the treebank

• Context-free grammar: we have rules in the form

$$\mathsf{S} \to \mathsf{NP}\text{-}\mathsf{SBJ}\;\mathsf{VP}$$

- We can collect these rules from the treebank
- We can even estimate probabilities for rules

$$p(\mathsf{S} \to \mathsf{NP\text{-}SBJ} \; \mathsf{VP}|\mathsf{S}) = \frac{count(\mathsf{S} \to \mathsf{NP\text{-}SBJ} \; \mathsf{VP})}{count(\mathsf{S})}$$

⇒ Probabilistic context-free grammar (PCFG)

DIL Lecture 10

7 Informatics

Compute probability of tree

• Probability of a tree is the product of the probabilities of the rule applications:

$$p(tree) = \prod_i p(rule_i)$$

• We assume that all rule applications are independent of each other

$$\begin{split} p(tree) &= p(\mathsf{S} \to \mathsf{NP\text{-}SBJ} \ \mathsf{VP|S}) \times \\ &\quad p(\mathsf{NP\text{-}SBJ} \to \mathsf{NNP} \ \mathsf{NNP|NP\text{-}SBJ}) \times \\ &\quad \dots \times \\ &\quad p(\mathsf{NNP} \to \textit{Elsevier}|\mathsf{NNP}) \end{split}$$

NNP NNP VBZ NP-PRD $VBZ \rightarrow is$ $NP-PRD \rightarrow NP PP$ Mr Vinken is $\mathsf{NP} \to \mathsf{NN}$ $NN \rightarrow \textit{chairman}$ $\mathsf{PP} \to \mathsf{IN} \; \mathsf{NP}$ NNP

 $\mathsf{IN} \to \mathit{of}$ $\mathsf{NP} \to \mathsf{NNP}$ NNP → Elsevier

Philipp Koehn DIL Lecture 10 9 February 2006 Philipp Koehn DIL Lecture 10 9 February 2006

Prepositional phrase attachment ambiguity

PP attached to NP-PRD PP attached to VF

Philipp Koehn DIL Lecture 10 9 February 2006

nf School of tics

PP attachment ambiguity: difference in probability

• PP attachment to NP-PRD is preferred if

$$p(\mathsf{VP} \to \mathsf{VBZ} \; \mathsf{NP\text{-}PRD} | \mathsf{VP}) \times p(\mathsf{NP\text{-}PRD} \to \mathsf{NP} \; \mathsf{PP} | \mathsf{NP\text{-}PRD})$$

is larger than

$$p(\mathsf{VP} \to \mathsf{VBZ} \; \mathsf{NP}\text{-}\mathsf{PRD} \; \mathsf{PP}|\mathsf{VP}) \times p(\mathsf{NP}\text{-}\mathsf{PRD} \to \mathsf{NP}|\mathsf{NP}\text{-}\mathsf{PRD})$$

• Is this too general?

Philipp Koehn DIL Lecture 10 9 February 2006

12 informatics

Weakness of PCFG

- Independence assumption too strong
- Non-terminal rule applications do not use lexical information
- Not sufficiently sensitive to structural differences beyond parent/child node relationships

Philipp Koehn DIL Lecture 10 9 February 2006

14 Informatics

Adding head words to trees

nformatics

PP attachment ambiguity: rule applications

 $S \rightarrow NP-SBJ VP$ $S \rightarrow NP-SBJVP$ $\begin{array}{c} \text{NP-SBJ} \rightarrow \text{NNP NNP} \\ \text{NNP} \rightarrow Mr \end{array}$ $\mathsf{NP}\text{-}\mathsf{SBJ}\to\mathsf{NNP}\,\mathsf{NNP}$ $NNP \rightarrow Mr$ $NNP \rightarrow Vinken$ $NNP \rightarrow Vinken$ VP → VBZ NP-PRD VP → VBZ NP-PRD PP $VBZ \to {\it is}$ $VBZ \rightarrow is$ NP-PRD → NP PP $NP-PRD \rightarrow NP$ $NP \rightarrow NN$ $NP \rightarrow NN$ $NN \rightarrow chairman$ ${\rm NN} \to {\it chairman}$ $\mathsf{PP} \to \mathsf{IN} \; \mathsf{NP}$ $\mathsf{PP} \to \mathsf{IN} \; \mathsf{NP}$ $IN \rightarrow of$ $NP \rightarrow NNP$ $IN \rightarrow of$ $NP \rightarrow NNP$ NNP → Elsevier NNP → Elsevier

PP attached to NP-PRD PP attached to VP

Philipp Koehn DIL Lecture 10 9 February 2006

nformatics

Scope ambiguity

However: the same rules are applied

Philipp Koehn DIL Lecture 10 9 February 2006

nformatics

Head words

• Recall dependency structure:

 Direct relationships between words, some are the head of others (see also Head-Driven Phrase Structure Grammar)

Philipp Koehn DIL Lecture 10 9 February 2006

15 inf^{School of}tics

Head words in rules

- Each context-free rule has one head child that is the head of the rule
 - S \rightarrow NP VP
 - VP ightarrow VBZ NP
- NP ightarrow DT NN $lap{NN}$
- Parent receives head word from head child
- Head childs are not marked in the Penn treebank, but they are easy to recover using simple rules

Philipp Koehn DIL Lecture 10 9 February 2006

17 Informatics

Recovering heads

- Rule for recovering heads for NPs
- if rule contains NN, NNS or NNP, choose rightmost NN, NNS or NNP
- else if rule contains a NP, choose leftmost NP
 else if rule contains a JJ, choose rightmost JJ
- else if rule contains a CD, choose rightmost CD
- else choose rightmost child
- Examples
 - NP \rightarrow DT NNP NN
 - NP \rightarrow *NP* CC *NP*
 - NP \rightarrow *NP* PP
 - NP \rightarrow DT JJ
- NP $\rightarrow DT$

Philipp Koehn

DIL Lecture 10

9 February 2006

nf School of Informatics

Sparse data concerns

How often will we encounter

 $\mathsf{NP}(\mathsf{Hoboken}) \to \mathsf{NP}(\mathsf{Hoboken}) \; \mathsf{CC}(\mathsf{and}) \; \mathsf{NP}(\mathsf{John})$

... or even

$$NP(Jim) \rightarrow NP(Jim) CC(and) NP(John)$$

• If not seen in training, probability will be zero

Philipp Koehn

DIL Lecture 10

9 February 2006

nf School of tics

Sparse data: Interpolation

- Use of interpolation with back-off statistics (recall: language modeling)
- Generate child tag

$$p(\mathsf{CC}|\mathsf{NP},\mathit{Jim},\mathsf{left}) = \lambda_1 \frac{count(\mathsf{CC},\mathsf{NP},\mathit{Jim},\mathsf{left})}{count(\mathsf{NP},\mathit{Jim},\mathsf{left})} + \lambda_2 \frac{count(\mathsf{CC},\mathsf{NP},\mathsf{left})}{count(\mathsf{NP},\mathsf{left})}$$

• With $0 \le \lambda_1 \le 1$, $0 \le \lambda_2 \le 1$, $\lambda_1 + \lambda_2 = 1$

DIL Lecture 10

of informatics

What also helps

- Adding a count for distance from head word
- Part-of-speech of the head word and the child word also useful
- Improving tags
 - instead of general VB_i distinguish between intransitive verb phrases Vi_i and transitive verb phrases Vt
- distinguish between complements (required attachments, e.g. object of a transitive verb) and adjuncts (optional attachments, e.g. yesterday)
- Not only use parent tag, but also grand-parent tag
- Create n-best list of best parse trees, re-score

Using head nodes

• PP attachment to NP-PRD is preferred if

$$p(\mathsf{VP}(\mathsf{is}) \to \mathsf{VBZ}(\mathsf{is}) \ \mathsf{NP-PRD}(\mathsf{chairman}) | \mathsf{VP}(\mathsf{is})) \\ \times p(\mathsf{NP-PRD}(\mathsf{chairman}) \to \mathsf{NP}(\mathsf{chairman}) \ \mathsf{PP}(\mathsf{Elsevier}) | \mathsf{NP-PRD}(\mathsf{chairman}))$$

is larger than

$$p(\mathsf{VP}(\mathsf{is}) \to \mathsf{VBZ}(\mathsf{is}) \; \mathsf{NP-PRD}(\mathsf{chairman}) \; \mathsf{PP}(\mathsf{Elsevier}) | \mathsf{VP}(\mathsf{is})) \times p(\mathsf{NP-PRD}(\mathsf{chairman}) \to \mathsf{NP}(\mathsf{chairman}) | \mathsf{NP-PRD}(\mathsf{chairman}))$$

• Scope ambiguity: combining Hoboken and Jim should have low probability

```
p(NP(Hoboken) \rightarrow NP(Hoboken) CC(and) NP(John)|VP(Hoboken))
```

Philipp Koehn DIL Lecture 10

nf School of Informatics

Sparse data: Dependency relations

• Instead of using a complex rule

we collect statistics over dependency relations

head word	head tag	child node	child tag	direction
Jim	NP	and	CC	left
Jim	NP	John	NP	left

- first generate **child tag**: p(CC|NP, Jim, left)
- then generate **child word**: p(and|NP, Jim, |eft, CC)

DIL Lecture 10 Philipp Koehn 9 February 2006

nf School of tics

Sparse data: Interpolation (2)

• Generate child word

$$\begin{split} p(\textit{and}|\mathsf{CC},\mathsf{NP},\textit{Jim},\mathsf{left}) \ &= \lambda_1 \, \frac{count(\textit{and},\mathsf{CC},\mathsf{NP},\textit{Jim},\mathsf{left})}{count(\mathsf{CC},\mathsf{NP},\textit{Jim},\mathsf{left})} \\ &+ \lambda_2 \, \frac{count(\textit{and},\mathsf{CC},\mathsf{NP},\mathsf{left})}{count(\mathsf{CC},\mathsf{NP},\mathsf{left})} \\ &+ \lambda_3 \, \frac{count(\textit{and},\mathsf{CC},\mathsf{left})}{count(\mathsf{CC},\mathsf{left})} \end{split}$$

• With $0 \le \lambda_1 \le 1$, $0 \le \lambda_2 \le 1$, $0 \le \lambda_3 \le 1$, $\lambda_1 + \lambda_2 + \lambda_3 = 1$

Philipp Koehn DIL Lecture 10 9 February 2006

anformatics

Parsing algorithm

- Efficient parsing algorithm is tricky
- Algorithm is similar to chart parsing, as presented
- Impossible to search entire space of possible parse trees
- → rest cost estimation, pruning

Philipp Koehn DIL Lecture 10 DIL Lecture 10 9 February 2006 Philipp Koehn 9 February 2006

Performance

- Performance typically measured in recall/precision of dependency relations

 - PCFG: 74.8%/70.6%
 using lexical dependencies: 85.7%/85.3%
 latest models (Collins): 89.0%/88.7%
- Core sentence structure (complements, NP chunks) recovered with over 90% accuracy
- Attachment ambiguities involving adjuncts are resolved with much lower accuracy ($\sim 80\%$ for PP attachment, $\sim 50-60\%$ for coordination)

Note: numbers quoted from lecture 4 Parsing and Syntax II of MIT class 6.891 Natural Language Processing by Michael Collins (2005)

Philipp Koehn

DIL Lecture 10

9 February 2006