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POS tagging tools

• Three commonly used, freely available tools for tagging:

– TnT by Thorsten Brants (2000): Hidden Markov Model
http://www.coli.uni-saarland.de/ thorsten/tnt/

– Brill tagger by Eric Brill (1995): transformation based learning
http://www.cs.jhu.edu/∼brill/

– MXPOST by Adwait Ratnaparkhi (1996): maximum entropy model
ftp://ftp.cis.upenn.edu/pub/adwait/jmx/jmx.tar.gz

• All have similar performance (∼96% on Penn Treebank English)
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Probabilities vs. rules

• We examined two supervised learning methods for the tagging task

• HMMs: probabilities allow for graded decisions, instead of just yes/no

• Transformation based learning: more features can be considered

• We would like to combine both ⇒ maximum entropy models

– a large number of features can be defined
– features are weighted by their importance
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Features

• Each tagging decision for a word occurs in a specific context

• For tagging, we consider as context the history hi

– the word itself
– morphological properties of the word
– other words surrounding the word
– previous tags

• We can define a feature fj that allows us to learn how well a specific aspect
of histories hi is associated with a tag ti
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Features (2)

• We observe in the data patterns such as:

the word like has in 50% of the cases the tag VB

• Previously, in HMM models, this led us to introduce probabilities (as part of
the tag sequence model) such as

p(V B|like) = 0.5
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Features (3)

• In a maximum entropy model, this information is captured by a feature

fj(hi, ti) =

{
1 if wi = like and ti = V B

0 otherwise

• The importance of a feature fj is defined by a parameter λj
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Features (4)

• Features may consider morphology

fj(hi, ti) =

{
1 if suffix(wi) = ”ing” and ti = V B

0 otherwise

• Features may consider tag sequences

fj(hi, ti) =

{
1 if ti−2 = DET and ti−1 = NN and ti = V B

0 otherwise
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Features in Ratnaparkhi [1996]

frequent wi wi = X

rare wi X is prefix of wi, |X| ≤ 4
X is suffix of wi, |X| ≤ 4
wi contains a number
wi contains uppercase character
wi contains hyphen

all wi ti−1 = X
ti−2ti−1 = XY
wi−1 = X
wi−2 = X
wi+1 = X
wi+2 = X
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Log-linear model

• Features fj and parameters λj are used to compute the probability p(hi, ti):

p(hi, ti) =
∏
fj

λ
fj(hi,ti)

j

• These types of models are called log-linear models, since they can be
reformulated into

log p(hi, ti) =
∑
fj

fj(hi, ti) log λj

• There are many learning methods for these models, maximum entropy is just
one of them
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Conditional probabilities

• We defined a model p(hi, ti) for the joint probability distribution for a history
hi and a tag ti

• Conditional probabilities can be computed straight-forward by

p(hi|ti) =
p(hi, ti)∑
i′ p(hi, ti′)
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Tagging a sequence

• We want to tag a sequence w1, ..., wn

• This can be decomposed into:

p(t1, ..., tn|w1, ..., wn) =
n∏

i=1

p(ti|hi)

• The history hi consist of all words w1, ..., wn and previous tags t1, ..., ti−1

• We cannot use Viterbi search ⇒ heuristic beam search is used (more on
beam search in a future lecture on machine translation)
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Questions for training

• Feature selection

– given the large number of possible features, which ones will be part of the
model?

– we do not want redundant features
– we do not want unreliable and rarely occurring features (avoid overfitting)

• Parameter values λj

– λj are positive real numbered values
– how do we set them?
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Feature selection

• Feature selection in Ratnaparkhi [1996]

– Feature has to occur 10 times in the training data

• Other feature selection methods

– use features with high mutual information
– add feature that reduces training error most, retrain
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Setting the parameter values λj: Goals

• The empirical expectation of a feature fj occurring in the training data is
defined by

Ẽ(fj) =
1
n

n∑
i=1

fj(hi, ti)

• The model expectation of that feature occurring is

E(fj) =
∑
h,t

p(h, t)fj(h, t)

• We require that Ẽ(fj) = E(fj)
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Empirical expectation

• Consider the feature

fj(hi, ti) =

{
1 if wi = like and ti = V B

0 otherwise

• Computing the empirical expectation Ẽ(fj):

– if there are 10,000 words (and tags) in the training data
– ... and the word like occurs with the tag VB 20 times
– ... then

Ẽ(fj) =
1
n

n∑
i=1

fj(hi, ti) =
1

10000

10000∑
i=1

fj(hi, ti) =
20

10000
= 0.002
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Model expectation

• We defined the model expectation of a feature occurring as

E(fj) =
∑
h,t

p(h, t)fj(h, t)

• Practically, we cannot sum over all possible histories h and tags t

• Instead, we compute the model expectation of the feature on the training data:

E(fj) ≈
1
n

n∑
i=1

p(t|hi) fj(hi, t)

Note: theoretically we have to sum over all t, but fj(hi, t) = 0 for all but one t
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Goals of maximum entropy training

• Recap: we require that Ẽ(fj) = E(fj), or

1
n

n∑
i=1

fj(hi, ti) =
1
n

n∑
i=1

p(t|hi) fj(hi, t)

• Otherwise we want maximum entropy, i.e. we do not want to introduce any
additional order into the model (Occam’s razor: simplest model is best)

• Entropy:

H(p) =
∑
h,t

p(h, t) log p(h, t)
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Improved Iterative Scaling [Berger, 1993]
Input: Feature functions f1, ..., fm, empirical distribution p̃(x, y)
Output: Optimal parameter values λ1, ..., λm

1. Start with λi = 0 for all i ∈ {1, 2, ..., n}

2. Do for each i ∈ {1, 2, ..., n}:

a. ∆λi = 1
C log Ẽ(fi)

E(fi)

b. Update λi ← λi + ∆λi

3. Go to step 2 if not all the λi have converged

Note: This algorithm requires that ∀t, h :
∑

i fi(t, h) = C, which can be ensured
with an additional filler feature
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