Assignment: Named Entity Recognition Data Intensive Linguistics 2005

Philipp Koehn and Sebastian Riedel

30. January 2006

Outline

- Introduction
 - Information Extraction
 - Named Entity Recognition
 - CoNLL Shared Task
- 2 Choices
- Assessment

Information Extraction

- Extract structured information (say, a Database) from unstructured or semi structured natural language data
 - Terrorist attack information from newspapers
 - Protein-protein interactions from biomedical papers
 - Character relations from novels
- Intially driven by the Message Understanding Conferences (MUC)
- Somewhere between Natural Language Understanding and Information Retrieval

The Information Extraction Subtasks

- Named Entity Recognition:
 - which phrases refer to what kind of entities
- Coreference Resolution:
 - which phrases refer to the same entity
- Relation Extraction:
 - which entities are related in what kind of relationships
- Event Extraction:
 - which events are mentioned with which attributes

Named Entity Recognition

Example

Frank Kuhn, CEO of Whatever You Say, said in San Diego...

- detected 3 segments
- classfified into PERSON, ORGANISATION and LOCATION

CoNLL Shared Task 2003

- Given: Training, development and test sets for NER in German and English
- Identify entity phrases and classify into PERSON, LOCATION, ORGANISATION and MISC.
- Bring together researchers in the area of Computational Natural Language Learning
- aims at evaluating the millions of Machine Learning approaches out there

BIO Scheme in CoNLL 2003

Example								
German	American	Frank	Kuhn	CEO	of	Whatever	You	Say
I-ORG	B-ORG	I-PER	I-PER	0	0	I-ORG	I-ORG	I-ORG

 Very confusing since B tags are only used if a new entity of the same type starts after an entity

A Graphical Model for NER

- The general NER framework covers
 - Features,
 - local classifiers and
 - sequential constraints

Features

Frank

- The most important aspect of almost every ML system
- The easier it is to incorporate your own intuitions in the form of many "overlapping" features the more powerful a learner is!
- Features to consider: POS tags, Words, Gazetteer information, capitalization information, contextual versions of the above.

Local Classifier

Find

- Maximum Entropy Classifier (Berger et al. 1996)
- Large Margin approach, such as SVM (Vapnik 1995)
- Naive Bayes (strong independence assumption)
- Whatever you like

Ensemble Methods

- Take a set of sufficiently diverse classifiers (different views)
- Let them vote on the tag of a single token (or average their probabilistic output)
- Diversity through different feature sets, different learners, different training data (Dietterich 2000)

Sequential Modelling

• Tags interdepend (A "B" tag can not follow an "O" tag etc.) or

$$\rho(t_1, t_2, t_3 \dots | f_1, f_2, f_3 \dots) \neq \prod_{i}^{n} \rho(t_i | f_i)$$

Could for instance use Viterbi and a model such as

$$\rho(t_1, t_2, t_3 \dots | f_1, f_2, f_3 \dots) = \rho(t_1 | f_1) \prod_{i=2}^n \rho(t_i | f_i) \rho(t_i | t_{i-1})$$

Software

- Use any programming language you like!
- Try to find good toolkits!
 - Maxent Toolkit of Zhang Le! (very good and fast training)
 - CRF++ framework (supports sequential modelling)
 - Weka (easy to use but memory intensive, slow)
 - SVM_{light}, LibSVM (long training time, usually good performance)

Timetable

- 7.2.2006 Presentation of prelimanery results for the baseline system you developed
- 13.3.2006 Hand in of paper and code!

Assessment Criteria

- Quality of the paper
 - Structure
 - Use of Literature
 - Error Analysis
- Performance of your system
- Creativity