Data Intensive Linguistics — Lecture 6 Tagging (II): Transformation-Based Learning and Maximum Entropy Models

Philipp Koehn

26 January 2006

K DIL 26 January 2006

anformatics

26 January 2006

How good is HMM tagging?

 There are many algorithms for supervised learning (naive Bayes, decision trees, maximum entropy, neural networks, support vector machines, ...)

Tagging as supervised learning

- given: some annotated data (words annotated with POS tags)

- build model (based on features, i.e. representation of example)

• Tagging is a supervised learning problem

- predict unseen data (POS tags for words)

- feature engineering: how best represent the data

Issues in supervised learning

- there is no data like more data

- overfitting to the training data?

- Labeling a sequence is very fast
- Viterbi algorithm outputs best label sequence (previous tags affect labeling of next tag), not just best tag for each word in isolation
- It is easy to get 2nd best sequence, 3rd best sequence, etc.
- But: uses only a *very small window* around word (n previous tags)

PK DIL 26 January 2006

finf School of tics

More features (2)

- Lexical features
 - if one of the previous tags is not, then VB is likelier than VBP
- Morphological features
 - if word ends in -tion it is most likely an NN
 - if word ends in -ly it is most likely an adverb

C DIL 26 January 2006

7 informatics

Applying the model to training data

- We can use the HMM tagger to tag the training data
- Then, we can compare predicted tags to true tags the old the boat words man DET DET NN Ш NN predicted: NN true tag: DET NN VΒ DET
- How can we fix these errors? Possible transformation rules:
 - change NN to VB if no verb in sentence predicted: DET JJ VB DET NN
 change JJ to NN if followed by VB predicted: DET NN VB DET NN

One tagging method: Hidden Markov Models

- HMMs make use of two conditional probability distributions
 - tag sequence model $p(t_n|t_{n-2},t_{n-1})$
 - tag-word predicition model $p(w_n | t_n)$
- Given these models, we can find the best sequence of tags for a sentence using the Viterbi algorithm

PK DIL 26 January 2006

nformatics

anf ^{School of}

More features

• Consider a larger window

w_{n-4}	w_{n-3}	w_{n-2}	w_{n-1}	w_n	w_{n+1}	w_{n+2}	w_{n+3}	w_{n+4}
t_{n-4}	t_{n-3}	t_{n-2}	t_{n-1}	t_n	t_{n+1}	t_{n+2}	t_{n+3}	t_{n+4}

- Examples for useful features
 - if one of the previous tags is MD, then VB is likelier than VBP (basic verb form instead of verb in singular present)
 - if next tag is JJ, then RBR is likelier than JJR (adverb instead of adjective)

PK DIL 26 January 20

anformatics

Using additional features

• Using more features in a conditional probability distribution?

 $p(t_i|w_i, f_0, ..., f_n)$

- ⇒ sparse data problems (insufficient statistics for reliable estimation of the distribution)
- \bullet Idea: First apply HMM, then fix errors with additional features

K DIL 26 January 2006

26 January 2006

26 January 2006

T informatics

Transformation based learning

- First, baseline tagger
 - most frequent tag for word: $\operatorname{argmax}_t \, p(t|w)$
 - Hidden Markov Model tagger
- Then apply transformations that fix the errors
 - go through the sequence word by word

Given: a new sentence that we want to tag

- For each word (in sentence order):

· apply transformation, if it matches

• Tag words with baseline tagger

• Output: tags

- if a feature is present in a current example,
- → apply rule (change tag)

PK DIL 26 January 2006

Applying the learned transformations

• For each transformation rule (in the sequence they were learned):

Goal: minimizing error

Learning transformations

- We need some metric to measure the error
- Here: number of wrongly assigned tags

• Given: words with their true tags

• Tag sentence with baseline tagger

- find transformation that minimizes error

- apply transformation to sentence

• Output: ordered list of transformations

- add transformation to list

Repeat

$$error(D,M) = 1 - \frac{\sum_{i=1}^{N} \delta(t_{i}^{predicted}, t_{i})}{N}$$

- General considerations for error functions:
 - Some errors are more costly than others
- Detecting cancer, if healthy vs. detecting healthy when cancer
- Sometimes error is difficult to assess (machine translation output different from human translation may be still correct)

PK DIL 26 January 2006

12 informatics

nf School of of tics

Overfitting

- It may be possible to fix all errors in training
- \bullet The last transformations learned may fix only one error each
- Transformations that work in training may not work elsewhere, or may even be generally harmful
- To avoid overfitting: stop early

nformatics

26 January 2006

Probabilities vs. rules

- HMMs: probabilities allow for graded decisions, instead of just yes/no
- Transformation based learning: more features can be considered
- We would like to combine both
- ⇒ Maximum Entropy models

nformatics

Generative modeling vs. discriminative training

- HMMs are an example for **generative modeling**
- a model M is created that predicts the training data D
- the model is broken up into smaller steps
- for each step, a probability distribution is learned
- model is optimized on p(D|M), how well it predicts the data
- Transformation-based learning is an example for discriminative training
 - a method ${\cal M}$ is created to predict the training data ${\cal D}$
 - $\boldsymbol{\mathsf{-}}$ it is improved by reducing prediction error
 - look for features that *discriminate* between faulty predictions and truth
 - model is optimized on error(M,D), also called the loss function

PK DIL 26 January 2006

f informatics

Maximum Entropy

- ullet Each example (here: word w) is represented by a set of features $\{f_i\}$, here:
 - the word itself
- morphological properties of the word
- other words and tags surrounding the word
- The task is the classify the word into a class c_i (here: the POS tag)
- ullet How well a feature f_i predicts a class c_j is defined by a parameter $lpha(f_i,c_j)$
- Maximum entropy model:

$$p(c_j|w) = \prod_{f_i \in w} \alpha(f_i, c_j)$$

PK DIL 26 January 2006

Maximum Entropy training

- Feature selection
 - given the large number of possible features, which ones will be part of the model?
 - we do not want unreliable and rarely occurring features (avoid overfitting)
 - good features help us to reduce the number of classification errors
- ullet Setting the parameter values $lpha(f_i,c_j)$
 - $\alpha(f_i,c_j)$ are real numbered values, similar to probabilities
 - we want to ensure that the expected co-occurrence of features and classes matches between the training data and the model
 - otherwise we want to have no bias in the model (maintain maximum entropy)
 - training algorithm: generalized iterative scaling

K DIL 26 January 2006

17 informatics

POS tagging tools

- Three commonly used, freely available tools for tagging:
 - TnT by Thorsten Brants (2000): Hidden Markov Model http://www.coli.uni-saarland.de/ thorsten/tnt/
 - Brill tagger by Eric Brill (1995): transformation based learning http://www.cs.jhu.edu/~brill/
 - MXPOST by Adwait Ratnaparkhi (1996): maximum entropy model ftp://ftp.cis.upenn.edu/pub/adwait/jmx/jmx.tar.gz
- All have similar performance (\sim 96% on Penn Treebank English)

DIL 26 January 2006