Data Intensive Linguistics — Lecture 4 Language Modeling (II): Smoothing and Back-Off

Philipp Koehn

19 January 2006

informatics

19 January 2006

nformatics

Evaluation of language models

- We want to evaluate the quality of language models
- A good language model gives a high probability to real English
- We measure this with cross entropy and perplexity

₹ informatics

Entropy over sequences will depend highly on how long these sequences are. To have a more meaningful measure, we want to measure entropy per word, also called the entropy rate

$$\frac{1}{n}H(w_1,...,w_n) = -\frac{1}{n}\sum_{W_1^n \in L} p(W_1^n) \, \log p(W_1^n)$$

ullet To measure true entropy of a language L_{ullet} we need to consider sequences of infinite length

$$H(L) = \lim_{n \to \infty} \frac{1}{n} H(w_1, ..., w_n)$$

= $\lim_{n \to \infty} -\frac{1}{n} \sum_{W_1^n \in L} p(W_1^n) \log p(W_1^n)$

19 January 2006

anformatics

Cross-entropy

- ullet In practice, we do not have the real probability distribution p for the language L_{\cdot} only a model m for it
- We define **cross-entropy** (replacing p with m) as

$$H(p,m) = \lim_{n \to \infty} -\frac{1}{n} \log m(W_1^n)$$

• True entropy of a language is an upper bound from cross-entropy:

$$H(p) \le H(p, m)$$

• Cross entropy is useful measure how well the model fits the true distribution.

Language Modeling Example

there is a big house Training set i buy a house they buy the new house

	p(big a) = 0.5	p(is there) = 1	p(buy they) = 1
• Model	p(house a) = 0.5	p(buy i) = 1	p(a buy) = 0.5
• Model	p(new the) = 1	p(house big) = 1	p(the buy) = 0.5
	p(a is) = 1	p(house new) = 1	p(they < s >) = .333

• Test sentence S: they buy a big house

$$\bullet \ p(S) = \underbrace{0.333}_{they} \times \underbrace{1}_{buy} \times \underbrace{0.5}_{a} \times \underbrace{0.5}_{big} \times \underbrace{1}_{house} = 0.0833$$

19 January 2006

nformatics

Entropy rate of a language

- We want to use entropy and perplexity to measure how well a model explains the test data
- Recall entropy:

$$H(p) = -\sum_{x} p(x) \log p(x)$$

ullet Entropy over sequences $w_1,...,w_n$ from a language L

$$H(w_1,...,w_n) = -\sum_{W_1^n \in L} p(W_1^n) \ \log p(W_1^n)$$

19 January 2006

finformatics

• This can be simplified (Shannon-McMillan-Breiman theorem) to:

$$H(L) = \lim_{n \to \infty} -\frac{1}{n} \log p(W_1^n)$$

• Intuitive explanation: If the sequence is infinite, we do not need to sum over all possible sequences, since the infinite sequence contains all sequences

19 January 2006

7 Informatics

Using cross-entropy

• In practice, we do not have an infinite sequence, but a limited test set. However, if the test set is large enough, its measured cross-entropy approximates the

$$\begin{split} \text{Example:} \quad & p(S) = \underbrace{0.333}_{they} \times \underbrace{1}_{buy} \times \underbrace{0.5}_{a} \times \underbrace{0.5}_{big} \times \underbrace{1}_{house} = 0.0833 \\ & H(p,m) = -\frac{1}{5} \log p(S) \\ & = -\frac{1}{5} (\underbrace{\log 0.333}_{they} + \underbrace{\log 1}_{buy} + \underbrace{\log 0.5}_{a} + \underbrace{\log 0.5}_{big} + \underbrace{\log 1}_{house}) \\ & = -\frac{1}{5} (\underbrace{-1.586}_{they} + \underbrace{0}_{buy} + \underbrace{-1}_{a} + \underbrace{-1}_{big} + \underbrace{0}_{house}) = 0.7173 \end{split}$$

19 January 2006

19 January 2006

nf School of Informatics

Perplexity

• Perplexity is defined as

$$\begin{split} PP &= 2^{H(p,m)} \\ &= 2^{-\frac{1}{n} \sum_{i=1}^{n} \log m(w_n | w_1, \dots, w_{n-1})} \end{split}$$

- In out example $H(m,p)=0.7173 \Rightarrow PP=1.6441$
- Intuitively, perplexity is the average number of choices at each point (weighted by the model)
- Perplexity is the most common measure to evaluate language models

PK DIL 19 January 2006

• One attempt to address this was with add-one smoothing

events (bigrams, trigrams, etc.)

Using held-out data

Recap from last lecture

• If we estimate probabilities solely from counts, we give probability 0 to unseen

- We know from the test data, how much probability mass should be assigned to certain counts.
- \bullet We can not use the test data for estimation, because that would be cheating.
- Divide up the training data: one half for count collection, one have for collecting frequencies in unseen text.
- Both halves can be switched and results combined to not lose out on training data.

PK DIL 19 January 2006

13 informatics

Using both halves

Both halves can be switched and results combined to not lose out on training data

$$p_h(w_1,...,w_n) = \frac{T_r^{01} + T_r^{10}}{N(N_r^{01} + N_r^{10})} \ \ \text{where} \ count(w_1,...,w_n) = r$$

PK DIL 19 January 2006

15 informatics

Good-Turing discounting

- Method based on the assumption of binomial distribution of frequencies.
- ullet Translate real counts r for words with adjusted counts r^* :

$$r^* = (r+1) rac{E(N_{r+1})}{E(N_r)}$$

 N_r is the $\emph{count of counts}$: number of words with frequency r.

- ullet The probability mass reserved for unseen events is $E(N_1)/N$.
- ullet For large r (where N_{r-1} is often 0), so various other methods can be applied (don't adjust counts, curve fitting to linear regression). See Manning+Schütze for details.

inf School of tics

Add-one smoothing: results

Church and Gale (1991a) experiment: 22 million words training, 22 million words testing, from same domain (AP news wire), counts of bigrams:

		=
Frequency r	Actual frequency	Expected frequency
in training	in test	in test (add one)
0	0.000027	0.000132
1	0.448	0.000274
2	1.25	0.000411
3	2.24	0.000548
4	3.23	0.000685
5	4.21	0.000822

We overestimate 0-count bigrams (0.000132>0.000027), but since there are so many, they use up so much probability mass that hardly any is left.

PK DIL 19 January 2006

12 Informatics

nformatics

Deleted estimation

- ullet Counts in training $C_t(w_1,...,w_n)$
- Counts how often an ngram seen in training is seen in held-out training $C_{n}(m_{1},\dots,m_{n})$
- ullet Number of ngrams with training count r: N_r
- ullet Total times ngrams of training count r seen in held-out data: T_r
- Held-out estimator:

 $p_h(w_1,...,w_n) = \frac{T_r}{N_-N} \quad \text{where } count(w_1,...,w_n) = r$

PK DIL 19 January 2006

Deleted estimation: results

Beleted estimation. Tesuit.

• Much better:

Frequency r	Actual frequency	Expected frequency
in training	in test	in test (Good Turing)
0	0.000027	0.000037
1	0.448	0.396
2	1.25	1.24
3	2.24	2.23
4	3.23	3.22
5	4.21	4.22

• Still overestimates unseen bigrams (why?)

K DIL 19 January 2006

DIL 19 January 2006

Good-Turing discounting: results

Almost perfect:

Frequency r	Actual frequency	Expected frequency
in training	in test	in test (Good Turing)
0	0.000027	0.000027
1	0.448	0.446
2	1.25	1.26
3	2.24	2.24
4	3.23	3.24
5	4.21	4,22

PK DIL 19 January 2006

informatics

Combining estimators

- We would like to use high-order n-gram language models
- \bullet ... but there are many ngrams with count 0
- ightarrow Linear interpolation p_{li} of estimators p_n of different order n:

$$\begin{split} p_{li}(w_n|w_{n-2},w_{n-1}) &= \lambda_1 \; p_1(w_n) \\ &+ \lambda_2 \; p_2(w_n|w_{n-1}) \\ &+ \lambda_3 \; p_1(w_n|w_{n-2},w_{n-1}) \end{split}$$

 $\bullet \ \lambda_1 + \lambda_2 + \lambda_3 = 1$

PK DIL 19 January 200

anformatics

General linear interpolation

• We can generalize interpolation and back-off:

$$\begin{split} p_{li}(w_n|w_{n-2},w_{n-1}) &= \lambda_1(w_{n-2},w_{n-1}) \ p_1(w_n) \\ &+ \lambda_2(w_{n-2},w_{n-1}) \ p_2(w_n|w_{n-1}) \\ &+ \lambda_3(w_{n-2},w_{n-1}) \ p_1(w_n|w_{n-2},w_{n-1}) \end{split}$$

• How do we set the λ s ?

PK DIL 19 January 200

anf School of the second of th

Other methods in language modeling

- Language modeling is still an active field of research
- There are many back-off and interpolation methods
- ullet Skip n-gram models: back-off to $p(w_n|w_{n-2})$
- Factored language models: back-off to word stems, part-of-speech tags
- Syntactic language models: using parse trees
- Language models trained on 200 billion words using 2 TB disk space

K DIL 19 January 2006

Is smoothing enough?

If two events (bigrams, trigrams) are both seen with the same frequency, they
are given the same probability.

n-gram	count
scottish beer is	0
scottish beer green	0
beer is	45
beer green	0

 If there is not sufficient evidence, we may want to back off to lower-order n-grams

PK DIL 19 January 2006

19 informatics

Katz's backing-off

• Another approach is to back-off to lower order n-gram language models

$$p_{bo}(w_n|w_{n-2},w_{n-1}) = \begin{cases} (1-d(w_{n-2},w_{n-1})) \ p(w_{n-2},w_{n-1}) > 0 \\ & \text{if } count(w_{n-2},w_{n-1}) > 0 \\ \alpha(w_{n-2},w_{n-1}) \ p_{bo}(w_n|w_{n-1}) \\ & \text{otherwise} \end{cases}$$

ullet The weight $lpha(w_{n-2},w_{n-1})$ given to the back-off path has to be chosen appropriately. Because this gives probability mass to unseen events, the maximum likelihood estimate has to be discounted (by $d(w_{n-2},w_{n-1})$)

PK DIL 19 January 2006

1nformatics

Consideration for weights $\lambda(w_{n-2}, w_{n-1})$

- ullet Based on $count(w_{n-2},w_{n-1})$: the more frequent the history, the higher $\lambda.$
- ightarrow Organize histories in bins with similar counts, and optimize the resulting few $\lambda(bin(w_{n-2},w_{n-1}))$ by optimizing perplexity on a limited **development set**
- Also consider entropy of predictions:
- both great deal and of that occur 178 times in a selection of novels by Jane Austin
- of that is followed by 115 different words
- great deal is followed by 36 different words, 38% of the time of follows

PK DIL 19 January 2006