Data Intensive Linguistics — Lecture 4 Language Modeling (II): Smoothing and Back-Off

Philipp Koehn

19 January 2006

19 January 2006

Language Modeling Example

Training set
 there is a big house i buy a house they buy the new house

• Model
$$\begin{bmatrix} p(big|a) = 0.5 & p(is|there) = 1 & p(buy|they) = 1 \\ p(house|a) = 0.5 & p(buy|i) = 1 & p(a|buy) = 0.5 \\ p(new|the) = 1 & p(house|big) = 1 & p(the|buy) = 0.5 \\ p(a|is) = 1 & p(house|new) = 1 & p(they| < s >) = .333 \\ \end{bmatrix}$$

• Test sentence S: they buy a big house

•
$$p(S) = \underbrace{0.333}_{they} \times \underbrace{1}_{buy} \times \underbrace{0.5}_{a} \times \underbrace{0.5}_{big} \times \underbrace{1}_{house} = 0.0833$$

nformatics

Evaluation of language models

- We want to evaluate the quality of language models
- A good language model gives a high probability to real English
- We measure this with cross entropy and perplexity

Entropy rate of a language

- We want to use entropy and perplexity to measure how well a model explains the test data
- Recall entropy:

$$H(p) = -\sum_{x} p(x) \log p(x)$$

• Entropy over sequences $w_1, ..., w_n$ from a language L:

$$H(w_1, ..., w_n) = -\sum_{W_1^n \in L} p(W_1^n) \log p(W_1^n)$$

• Entropy over sequences will depend highly on how long these sequences are. To have a more meaningful measure, we want to measure entropy per word, also called the **entropy rate**:

$$\frac{1}{n}H(w_1, ..., w_n) = -\frac{1}{n} \sum_{W_1^n \in L} p(W_1^n) \log p(W_1^n)$$

• To measure **true entropy of a language** *L*, we need to consider sequences of infinite length

$$H(L) = \lim_{n \to \infty} \frac{1}{n} H(w_1, \dots, w_n)$$
$$= \lim_{n \to \infty} -\frac{1}{n} \sum_{W_1^n \in L} p(W_1^n) \log p(W_1^n)$$

nformatics

• This can be simplified (Shannon-McMillan-Breiman theorem) to:

$$H(L) = \lim_{n \to \infty} -\frac{1}{n} \log p(W_1^n)$$

• Intuitive explanation: If the sequence is infinite, we do not need to sum over all possible sequences, since the infinite sequence contains all sequences

nformatics

5

a informatics

Cross-entropy

- In practice, we do not have the real probability distribution p for the language L, only a model m for it.
- We define **cross-entropy** (replacing p with m) as

$$H(p,m) = \lim_{n \to \infty} -\frac{1}{n} \log m(W_1^n)$$

• True entropy of a language is an upper bound from cross-entropy:

$$H(p) \le H(p,m)$$

• Cross entropy is useful measure how well the model fits the true distribution.

Using cross-entropy

• In practice, we do not have an infinite sequence, but a limited test set. However, if the test set is large enough, its *measured* cross-entropy approximates the *true* cross-entropy.

• Example:
$$p(S) = \underbrace{0.333}_{they} \times \underbrace{1}_{buy} \times \underbrace{0.5}_{a} \times \underbrace{0.5}_{big} \times \underbrace{1}_{house} = 0.0833$$

 $H(p,m) = -\frac{1}{5} \log p(S)$
 $= -\frac{1}{5} (\underbrace{\log 0.333}_{they} + \underbrace{\log 1}_{buy} + \underbrace{\log 0.5}_{a} + \underbrace{\log 0.5}_{big} + \underbrace{\log 1}_{house})$
 $= -\frac{1}{5} (\underbrace{-1.586}_{they} + \underbrace{0}_{buy} + \underbrace{-1}_{a} + \underbrace{-1}_{big} + \underbrace{0}_{house}) = 0.7173$

anformatics

Perplexity

• **Perplexity** is defined as

$$PP = 2^{H(p,m)}$$

= $2^{-\frac{1}{n}\sum_{i=1}^{n} \log m(w_n|w_1,...,w_{n-1})}$

- In out example $H(m,p) = 0.7173 \implies PP = 1.6441$
- Intuitively, perplexity is the average number of choices at each point (weighted by the model)
- Perplexity is the most common measure to evaluate language models

Recap from last lecture

- If we estimate probabilities solely from counts, we give probability 0 to unseen events (bigrams, trigrams, etc.)
- One attempt to address this was with add-one smoothing.

Add-one smoothing: results

Church and Gale (1991a) experiment: 22 million words training, 22 million words testing, from same domain (AP news wire), counts of bigrams:

Frequency r	Actual frequency	Expected frequency
in training	in test	in test (add one)
0	0.000027	0.000132
1	0.448	0.000274
2	1.25	0.000411
3	2.24	0.000548
4	3.23	0.000685
5	4.21	0.000822

We overestimate 0-count bigrams (0.000132 > 0.000027), but since there are so many, they use up so much probability mass that hardly any is left.

Using held-out data

- We know from the test data, how much probability mass should be assigned to certain counts.
- We can not use the test data for estimation, because that would be cheating.
- Divide up the training data: one half for count collection, one have for collecting frequencies in unseen text.
- Both halves can be switched and results combined to not lose out on training data.

Deleted estimation

- Counts in training $C_t(w_1, ..., w_n)$
- Counts how often an ngram seen in training is seen in held-out training $C_h(w_1,...,w_n)$
- Number of ngrams with training count r: N_r
- Total times ngrams of training count r seen in held-out data: T_r
- Held-out estimator:

$$p_h(w_1, ..., w_n) = \frac{T_r}{N_r N}$$
 where $count(w_1, ..., w_n) = r$

13 informatics

Using both halves

• Both halves can be switched and results combined to not lose out on training data

$$p_h(w_1, ..., w_n) = \frac{T_r^{01} + T_r^{10}}{N(N_r^{01} + N_r^{10})} \text{ where } count(w_1, ..., w_n) = r$$

Deleted estimation: results

• Much better:

Frequency r	Actual frequency	Expected frequency
in training	in test	in test (Good Turing)
0	0.000027	0.000037
1	0.448	0.396
2	1.25	1.24
3	2.24	2.23
4	3.23	3.22
5	4.21	4.22

• Still overestimates unseen bigrams (why?)

DIL

Good-Turing discounting

- Method based on the assumption of binomial distribution of frequencies.
- Translate real counts r for words with adjusted counts r^* :

$$r^* = (r+1)\frac{E(N_{r+1})}{E(N_r)}$$

 N_r is the *count of counts*: number of words with frequency r.

- The probability mass reserved for unseen events is $E(N_1)/N$.
- For large r (where N_{r-1} is often 0), so various other methods can be applied (don't adjust counts, curve fitting to linear regression). See Manning+Schütze for details.

Good-Turing discounting: results

• Almost perfect:

Frequency r	Actual frequency	Expected frequency	
in training	in test	in test (Good Turing)	
0	0.000027	0.000027	
1	0.448	0.446	
2	1.25	1.26	
3	2.24	2.24	
4	3.23	3.24	
5	4.21	4.22	

Is smoothing enough?

• If two events (bigrams, trigrams) are both seen with the same frequency, they are given the same probability.

n-gram	count
scottish beer is	0
scottish beer green	0
beer is	45
beer green	0

• If there is not sufficient evidence, we may want to **back off** to lower-order n-grams

Combining estimators

- We would like to use high-order n-gram language models
- ... but there are many ngrams with count 0.
- \rightarrow Linear interpolation p_{li} of estimators p_n of different order n:

$$p_{li}(w_n | w_{n-2}, w_{n-1}) = \lambda_1 p_1(w_n) + \lambda_2 p_2(w_n | w_{n-1}) + \lambda_3 p_1(w_n | w_{n-2}, w_{n-1})$$

• $\lambda_1 + \lambda_2 + \lambda_3 = 1$

Katz's backing-off

• Another approach is to back-off to lower order n-gram language models

$$p_{bo}(w_n|w_{n-2}, w_{n-1}) = \begin{cases} (1 - d(w_{n-2}, w_{n-1})) \ p(w_{n-2}, w_{n-1}) \\ \text{if } count(w_{n-2}, w_{n-1}) > 0 \\ \alpha(w_{n-2}, w_{n-1}) \ p_{bo}(w_n|w_{n-1}) \\ \text{otherwise} \end{cases}$$

• The weight $\alpha(w_{n-2}, w_{n-1})$ given to the back-off path has to be chosen appropriately. Because this gives probability mass to unseen events, the maximum likelihood estimate has to be discounted (by $d(w_{n-2}, w_{n-1})$)

DIL

nformatics

General linear interpolation

• We can generalize interpolation and back-off:

$$p_{li}(w_n | w_{n-2}, w_{n-1}) = \lambda_1(w_{n-2}, w_{n-1}) p_1(w_n) + \lambda_2(w_{n-2}, w_{n-1}) p_2(w_n | w_{n-1}) + \lambda_3(w_{n-2}, w_{n-1}) p_1(w_n | w_{n-2}, w_{n-1})$$

• How do we set the λ s ?

nformatics

20

Consideration for weights $\lambda(w_{n-2}, w_{n-1})$

- Based on $count(w_{n-2}, w_{n-1})$: the more frequent the history, the higher λ .
- \rightarrow Organize histories in bins with similar counts, and optimize the resulting few $\lambda(bin(w_{n-2}, w_{n-1}))$ by optimizing perplexity on a limited **development set**
 - Also consider entropy of predictions:
 - both great deal and of that occur 178 times in a selection of novels by Jane Austin
 - of that is followed by 115 different words
 - great deal is followed by 36 different words, 38% of the time of follows

Other methods in language modeling

- Language modeling is still an active field of research
- There are many back-off and interpolation methods
- Skip n-gram models: back-off to $p(w_n|w_{n-2})$
- Factored language models: back-off to word stems, part-of-speech tags
- Syntactic language models: using parse trees
- Language models trained on 200 billion words using 2 TB disk space