MSc Design and Analysis of Parallel Algorithms Supplementary Note 3

PRAM Sorting Algorithms

Sorting is probably the single most studied topic in the world of algorithm
design (whether sequential or parallel). Its popularity stems from its relative
simplicity (in the sense that the problem itself is simply and clearly defined,
without being completely trivial) and its wide applicability. Consequently,
we will investigate a range of proposed parallel sorting algorithms. This
note contains a discussion of two PRAM sorting algorithms.

We have already seen one PRAM sorting algorithm, which ran in con-
stant time on n? processors. This algorithm was based on a simple sequen-
tial algorithm called enumeration sort which has © (nz) run time. Thus
the PRAM version was an efficient implementation of a rather inefficient
sequential algorithm and was therefore not cost optimal. Many better se-
quential algorithms exist, with the two best known being mergesort and
quicksort. Mergesort has © (nlogn) run time, while quicksort performs
similarly on average, but with © (nQ) run time in the worst case. However,
the introduction of a little randomisation to pivot selection makes quicksort
a competitive algorithm (with small constants hidden in the asymptotic no-
tation and sorting in place), popular in practice. Neither PRAM algorithm
we present are strictly cost-optimal. The CREW version of mergesort is a
a factor of logn out, while the CRCW variant of quicksort is ‘cost-optimal
on average’, in a similarly practical way to sequential quicksort (in as much
as any CRCW PRAM algorithm is practical, which is a separate debate of
course!).

CREW Mergesort

Mergesort is a divide-and-conquer algorithm in which all the work is done
in the ‘combine’ phase. This involves merging two independently sorted
sequences of the same length. To avoid a © (n) time bottleneck in the ‘root’
process, we must devise a scheme for performing this task in parallel, with
a sensible number of processors. Our approach borrows something from



enumeration sort, in that we will assign one processor to each item. The
processor will have the job of working out its items position (or rank) in
the merged sequence. Once all positions are known, the items are moved to
their correct position in a single parallel step. We will assume that all the
items are distinct (but the algorithm can be tweaked to relax this condition
- can you think how?).

We exploit the fact that the two sequences are already sorted to simplify
the task of calculating rank. Firstly, we note that the final rank is the sum
of an item’s rank in its own sequence (which we know already) and what
would be its rank if inserted into the other sequence. This can be calculated
in O (log s) time by a single processor, for a sequence of length s, using a
standard binary search (see any standard sequential algorithms text if this
is unfamiliar). Since s such searches will be proceeding concurrently, we
require a concurrent read PRAM.

Now consider the big picture with one processor per item throughout.
The merging process begins with I pairs of sequences of length 1 being
merged in parallel concurrently (i.e. with nested parallelism) then % pairs
of sequences of length 2, and so on, until the final step which merges 2
sequences of length . Each such step (in a sequence of © (logn) steps)
takes time © (log s) with a sequence length of s. Summing these, we obtain
an overall run time of © (log2 n), for n processors, which is not quite (but
almost!) cost-optimal.

CRCW Quicksort

In contrast to mergesort, sequential quicksort is a divide & conquer algo-
rithm in which all the work is in the divide phase. A pivot value is chosen
from the sequence and the values are re-arranged so that all which are
smaller than (or equal to) the pivot come before it, and all those larger
come after it. Our CRCW quicksort notes that this amounts to computing
a tree of pivots, from which ranks can be computed, before rearranging the
data, as in CREW mergesort. The tree construction is described in detail
in Kumar and cleverly exploits concurrent write with arbitrary clash reso-
lution to randomize the choice of pivot. The computation of ranks is not
covered in detail and so we now elaborate on this.



We first note that if we knew how many nodes were in each sub-tree then
we could easily compute the ranks with a simple parallel sweep down the
tree. The rank of the root is simply the number of nodes in its left sub-tree.
The rank any other node depends upon whether the node is itself a left or a
right child. For left children, rank is the parent’s rank minus the size of the
node’s right sub-tree (because these are all larger the node) minus 1 (for
the node itself). Similarly, for right children rank is the parent’s rank plus
the size of the left tree plus 1. Try it with a few examples! Since the sweep
proceeds level by level down the tree, but in parallel at each level, it will
take time proportional to the depth of the tree, which is expected (because
of the randomization in the tree creation phase) to be © (logn) time.

It now remains to work out how to compute the sub-tree sizes quickly.
Given the tree of pivots, we think of each tree edge as consisting of two edges,
one going down (towards the leaves) and one coming back up (towards the
root). The size of a sub-tree is the number of up edges it contains (again,
try a few examples to convince yourself of this). We label each such edge
with an extra integer, 0 for “down” edges and 1 for “up” edges.

Now consider the order in which these edges would be visited by a “depth-
first” traversal of the tree (in other words a tour of the tree starting at the
root, and recursively visiting the left sub-tree of a node, then recursively
visiting its right sub tree). This gives us a list of edges



(54,33) (21,13) (21,33) (33,40) (33,33) (54,82) (72,82)
0 0 1 0 1 0 1
(33,21) (13,21) (33,33) (40,33) (33,54) (82,72) (82,54)
0 1 0 1 1 0 1

We want to know, for each node in the original tree, how many up edges
are visited between the first and last time that node appears in the edge
list. A little thought reveals that this is related to a prefix (with addition)
of the 0/1 values with which we labelled the list.

(54,33) (21,13) (21,33) (33,40) (33,33) (54,82) (72,82)
0 0 2 2 4 5 6
(33,21) (13,21) (33,33) (40,33) (33,54) (82,72) (82,54)
0 1 2 3 5 5 7

For any node in the original tree, the relevant number of up edges (in
other words the size of the sub-tree) is computed by subtracting the prefix
count as it stood when the node was first entered, from the count when
it was finally left. For example the higher of the two nodes containing 33
in this example roots a subtree of size 5 which is 5 — 0, while the node
containing 82 roots a subtree of size 2 which is 7 — 5. The root is an easy
special case, having a count one more than the final value in the prefix. Of
course, our data structures assume that we know the number of nodes in
the whole tree anyway.



