MSc Design and Analysis of Parallel Algorithms Supplementary Note 2

Designing Parallel Algorithms

As in the sequential case, there are no guaranteed rules or methodologies
for designing good parallel algorithms and in the end there is no substitute
for insight and intuition. That said, algorithm design skills can certainly
be improved by exposure to the existing body of techniques, tricks and
examples. While these are less developed in the parallel world, a number of
useful ideas have emerged. The material is divided into design techniques,
which provide us with a selection of solution strategies for whole problems,
and useful primitives, each a simple operation with an efficient parallel
implementation, which can serve as useful low-level building blocks (in a
manner loosely analogous to library routines in the sequential world).

Design Techniques

We begin by reviewing two well known sequential design techniques which
are often well suited to parallelization. We then move on to other approaches
inspired directly by the requirement for parallel activity.

Divide & Conquer

This is probably the most widely known and understood sequential tech-
nique. A problem is solved by decomposition into a set of related sub-
instances of the same problem which are solved recursively, followed by
composition of the sub-solutions to solve the original problem. A test de-
fines some simple examples as being directly soluble by some other method
(often trivial). Two well-worn examples are quicksort and mergesort. The
scope for parallelization is obvious but complications include the fact that
work at and near the root of the implied process tree may become a se-
quentialized bottleneck, by the danger that (particularly in message pass-
ing models) communication of small problems and solutions may swamp
the machine, and by the fact that the complexity of various sub-problems

1



may vary widely, necessitating some form of (possibly expensive) dynamic
load-balancing. The first of these concerns is sometimes addressed by par-
allelization of the decomposition and combination operations, leading to
algorithms in which parallelism is (conceptually) nested.

Pipelining

Pipelining mimics the operation of an assembly line, in which some overall
task (e.g. putting together a car) is decomposed into a sequence of sub-tasks.
While the overall completion time of any one task is not improved (and may
even be increased), a long sequence of tasks can be solved with significant
speed-up by having one partially completed task undergoing processing at
each sub-task site (or “stage”). A good balance between the execution
times of stages is essential. Pipelining is widely used in hardware design
to increase throughput in areas including instruction sequencing and vector
processing, since if the sum of the hardware costs of the stages is comparable
to that of a single general purpose process which can solve complete tasks,
then the parallelism and speed-up come more or less for free.

Step by Step Parallelization

This approach should not be confused with attempts to automatically par-
allelize sequential programs - trying to unravel the dependencies between
sequences of individual statements (or loop iterations) has proved successful
in only a limited number of specialized (but important) situations. Instead,
the algorithm designer can take a higher level view of the sequence of coarse
steps performed by a sequential algorithm and try to parallelize each of
these independently, keeping the higher level sequential control flow of the
algorithm intact. For example, some algorithm might involve two stages
(perhaps iterated) in which some value is first calculated from the data in
an array (the maximum value satisfying some property, for example), and
then all the entries in the array are updated in some way with respect to this
new value. It will sometimes be possible to devise effective parallelizations
of calculation and update steps, then to implement the whole algorithm
as the original sequence of these. Equally, we will sometimes find phases



which are hard (or impossible) to parallelize, or we may even find it hard
to identify phases in any useful way. If sections of such algorithms are left
to execute sequentially, then we must be aware of a simple result, known
as “Amdahl’s Law” which describes an important relationship between the
fraction of code left sequential and the maximum overall speed-up which
can be obtained.

If some fraction 0 < f <1 of a computation must be exe-
cuted sequentially, then the speed up which can be obtained
when the rest of the computation is executed in parallel, is
bounded above by % no matter how many processors are em-
ployed.

Proof: Let the computation require time T when executed sequentially. The

run time of a parallelized version will consist of a sequential component of
A-HT

duration f71" and a parallel component of duration > = The maximum
speed-up is then
T
fT+ l—pf T
_ 1
- f+ (17]0)

For example, if f is 0.1 then we cannot achieve a speed-up of more than
10.

Useful Primitives

In tandem with the “top-down” design techniques discussed above, a num-
ber of useful primitive parallel building blocks have emerged. These provide
pre-determined and efficient implementations of operations which are cen-
tral to many algorithms.



Parallel Reduction and Parallel Prefix

We have already encountered an instance of parallel reduction in the guise
of our summation algorithm. In general, given a sequence of values z;..z,
and some binary, associative operator @ on these values, then the task of a
reduction is to compute the value z1 P 2P ... D z,. Associativity is essential
for parallel implementation (and for the value described above to be well
defined, of course). In a similar situation, the task of a prefix computation
is to produce the sequence of values z1, 1P x9, r1Dx2Dx3, ..., 1D T2...D Ty,

As well as obvious, simple situations like finding maxima, summing etc,
reductions can be used with more complex operators as the essence of more
substantial algorithms. This should not be surprising, since a reduction can
be viewed as a divide and conquer algorithm with a trivial sequence splitting
divide step. Thus, mergesort can be expressed as a reduction in which the
operator is “merge” (convince yourself that merge is associative). Similarly,
prefix plays a role as a building block in many more complex algorithms.
We now present one example.

The knapsack problem gives us a set of n objects, each having a weight
w; and a value v;, and a knapsack, with capacity ¢ which we must fill
with objects or fractions thereof, such that the total weight of objects used
does not exceed the capacity, and so that the total value is maximised.
We assume that weight and value are distributed proportionally with the
division of an object.

The standard sequential algorithm proceeds as follows

sort items by decreasing profitability v/w;
usedweight = 0; 1 = 0;
while (usedweight < ¢) {
if (usedweight + (sorteditems[i].w) < c)
include sortediteml[i];
else
include the fraction of sorteditem[i]
which brings usedweight up to c;
i=i+1;



We adopt a step-by-step parallelization strategy. First, independently in
parallel we calculate profitabilities (constant time with n processors). Then
we sort in parallel (of which more later). Next we compute a prefix with
+ of the weights of the items in the sorted order. Finally, we observe
that objects now fall into three categories, checkable in a single parallel
step, which determine whether or not that object is part of the required
collection. The cases are

1. myprefiz < ¢, in which case the object is completely included,

2. myprefix > ¢, but left neighbours prefix is < ¢, in which case an
easily determined fraction of the object is included,

3. all other objects not required.

Obviously the run time depends upon the performance of the various oper-
ations on the chosen architecture. For example it is possible for a CREW
PRAM with n processors to sort n items in © (logn) time and to execute
a prefix with a constant time operation like 4+ in the same time. Since the
other operations are clearly constant time on the CREW PRAM, we have
a O (logn) time parallel algorithm for this model.

Pointer Jumping

Pointer jumping is a PRAM technique for processing data stored in shared
memory linked lists (as opposed to arrays). We assume that we know where
the items are in memory (typically one per processor), but that we do not
know their ordering (which is indicated by the “next” field of each item),
except for the last item in the list whose “next” field is NULL. The key idea
in pointer jumping is that we can quickly find our way from beginning to
end of the list by skipping on from one item to the next field of its next item.
If this happens concurrently across the list, we will jump from beginning
to end in logn steps. To be interesting, we must also do some useful work
along the way.

The simplest application of pointer jumping is in the implementation of
an operation known as list ranking which requires us to compute, for each
item in the list, its distance from the end of the list. We can obviously do

5



this in n steps sequentially, but pointer jumping lets us complete the task in
log n steps using n processors. Here is some pseudocode for the algorithm.

for all objects in parallel {

this.jump = this.next; // copy the list
if (this.jump == NULL) then this.d = 0;
else this.d = 1; // initialise

while (this.jump != NULL) {
this.d += (this.jump).d; // accumulate
this.jump = (this.jump).jump; // move on
+
+

We begin by making a copy of the “next” pointers which define the list,
since the algorithm will destroy the copy it works with. The d field for each
object ends up storing the required rank (distance from the end of the list).
The following diagram illustrates the progress of the pointer jumps and the
emerging d values.

N OO ONOEONONONONO,
040202020202 020C20R0

e
O HOLOLOs 02 020X O OR0

OZO4ONONONONONONORD

ONONOBONONONONORORO



A further application of pointer jumping lets us implement a list prefix
algorithm for data stored in shared memory lists, rather than arrays. The
structure is similar to that for list ranking, but notice that each operation
is performed by a processor on the data field of the item which follows it.
The prefix value is computed in the pf field.

for all objects in parallel {
this.jump = this.next; this.pf = this.x;

while (this.jump != NULL) {
this. jump.pf = Op(this.pf, this.jump.pf);
this.jump = (this.jump).jump;

+



