Compiling Techniques

Lecture 11: Introduction to Code Generation

Christophe Dubach

28 Octoberr 2016

Table of contents

- Introduction
 - Overview
 - The Backend
 - The Big Picture
- 2 Code Generation

Overview

Front-end

- Lexer
- Parser
- AST builder
- Semantic Analyser

Middle-end

• Optimizations (Compiler Optimisations course)

The Back end

- Translate IR into target machine code
- Choose instructions to implement each IR operation
- Decide which value to keep in registers
- Ensure conformance with system interfaces
- Automation has been less successful in the back end

Instruction Selection

- Mapping the IR into assembly code (in our case AST to MIPS assembly)
- Assumes a fixed storage mapping & code shape
- Combining operations, using address modes

Register Allocation

- Deciding which value reside in a register
- Minimise amount of spilling

Instruction Scheduling

- Avoid hardware stalls and interlocks
- Reordering operations to hide latencies
- Use all functional units productively

Instruction scheduling is an optimisation

Improves quality of the code. Not strictly required.

The Big Picture

How hard are these problems?

- Instruction selection
 - Can make locally optimal choices, with automated tool
 - Global optimality is NP-Complete
- Instruction scheduling
 - Single basic block ⇒ heuristic work quickly
 - General problem, with control flow ⇒ NP-Complete
- Register allocation
 - ullet Single basic block, no spilling, 1 register size \Rightarrow linear time
 - Whole procedure is NP-Complete (graph colouring algorithm)

These three problems are tightly coupled!

However, conventional wisdom says we lose little by solving these problems independently.

How to solve these problems?

- Instruction selection
 - Use some form of pattern matching
 - Assume enough registers or target "important" values
- Instruction scheduling
 - Within a block, list scheduling is "close" to optimal
 - Across blocks, build framework to apply list scheduling
- Register allocation
 - Start from virtual registers & map "enough" into k
 - With targeting, focus on "good" priority heuristic

Approximate solutions

Will be important to define good metrics for "close", "good", "enough",

Generating Code for Register-Based Machine

The key code quality issue is holding values in registers

- when can a value be safely allocated to a register?
 - When only 1 name can reference its value
 - Pointers, parameters, aggregate & arrays all cause trouble
- when should a value be allocated to a register?
 - when it is both safe & profitable

Encoding this knowledge into the IR

- assign a virtual register to anything that go into one
- load or store the others at each reference

Register allocation is key

All this relies on a strong register allocator.

Register-based machine

- Most real physical machine are register-based
- Instruction operates on registers.
- The number of architecture register available to the compiler can vary from processor to processors.
- The first phase of code generation usually assumes an unlimited numbers of registers (virtual registers).
- Later phases (register allocator) converts these virtual register to the finite set of available physical architectural registers (more on this in lecture on register allocation).

Generating Code for Register-Based Machine

Memory

y

Example: x+y

```
loadl @x \rightarrow r1 // load the address of x into r1 loadA r1 \rightarrow r2 // now value of x is in r2 loadl @y \rightarrow r3 // load the address of y into r3 loadA r3 \rightarrow r4 // now value of y is in r4 add r2, r4 \rightarrow r5 // r5 contains x+y
```

Exercise

Write down the list of assembly instructions for x+(y*3)

Exercise

Assuming you have an instruction muli (multiply immediate), rewrite the previous example.

This illustrate the instruction selection problem (more on this in following lectures).

Visitor Implementation for binary operators

Binary operators

```
Register visitBinOp(BinOp bo) {
  Register IhsReg = bo. Ihs.accept(this);
  Register rhsReg = bo.rhs.accept(this);
  Register result = nextRegister();
  switch(bo.op) {
    case ADD:
      emit(add lhsReg.id rhsReg.id \rightarrow result.id);
      break:
    case MUL:
      emit(mul lhsReg.id rhsReg.id \rightarrow result.id);
      break:
  freeRegister(IhsReg);
  freeRegister(rhsReg);
  return result:
```

Visitor Implementation for variables

```
loadl @x \rightarrow r1 // load the address of x into r1 loadA r1 \rightarrow r2 // now value of x is in r2
```

Var

```
Register visitVar(Var v) {
   Register addrReg = nextRegister();
   Register result = nextRegister();
   emit(loadI v.address → addrReg.id);
   emit(loadA addrReg.id → result.id);
   freeRegister(addrReg);
   return result;
}
```

Visitor Implementation for integer literals

```
IntLiteral
```

```
Register visitIntLiteral(IntLiteral it) {
  Register result = nextRegister();
  emit(loadl it.value → result.id);
  return result;
}
```

Next lecture

Code Shape

- Conditions
- Function calls
- Loops
- If statement

Memory management

- Static/stack/heap allocation
- Data structure memory layout
- Register spilling