
Overview
Registers

Instructions

Compiling Techniques
Lecture 10: An Introduction to MIPS assembly

Christophe Dubach

18 October 2016

Christophe Dubach Compiling Techniques

Overview
Registers

Instructions

Table of contents

1 Overview

2 Registers

3 Instructions
Arithmetic
Memory
Control Structures
System Calls

Christophe Dubach Compiling Techniques

Overview
Registers

Instructions

Assembly program template

.data

Data segment: constant and variable definitions go here (including
statically allocated arrays)

format for declarations: name: storage_type value

create storage for variable of specified type with given name
and value

var1: .word 3 # one word of storage with initial value 3

array1: .space 40 # 40 bytes of storage for array1

.text

Text segment: assembly instructions go here

Christophe Dubach Compiling Techniques

Overview
Registers

Instructions

Components of an assembly program

Category Example
Comment # I am a comment

Assembler directives .data, .asciiz

Operation mnemonic add, addi, lw, bne

Register name $zero, $t3

Address label (declaration) loop1:

Address label (use) loop1

Integer constant 8, -4, 0xA9

Character constant ’h’, ’\t’

String constant "Hello, world\n"

Christophe Dubach Compiling Techniques

Overview
Registers

Instructions

Hello world example

Description: a simple hello world program

.data

hellostr: .asciiz "Hello , world\n"

.text

li $v0 , 4 # setup print syscall

la $a0$, hellostr # argument to print string

syscall # tell the OS to do the system call

li $v0 , 10 # setup exit syscall

syscall # tell the OS to perform the syscall

Christophe Dubach Compiling Techniques

Overview
Registers

Instructions

Registers

32 general-purpose registers

register preceded by $ in assembly language

two formats for addressing (name or number: $zero or $0)

holds 32 bits value (= 4 bytes = 1 word)

stack grows from high memory to low memory

Christophe Dubach Compiling Techniques

Overview
Registers

Instructions

Registers

Register Alternative Description
number name
0 $zero the value 0
1 $at assembler temporary: reserved by the assembler
2-3 $v0-$v1 values: from expression evaluation and function results
4-7 $a0-$a3 arguments: first four parameters for function (no preserved

across function call)
8-15 $t0-$t7 temporaries (not preserved across function calls)
16-23 $s0-$s7 saved temporaries (preserved across function calls)
24-25 $t8-$t9 temporaries: (not preserved across function calls)
26-27 $k0-$k1 reserved for use by the interrupt/trap handler
28 $gp global pointer : base of global data segment
29 $sp stack pointer : points to last location on stack
30 $s8/$fp saved value / frame pointer (preserved across function call)
31 $ra return address

Special Hi and Lo registers (not shown above) holds result of
multiplication and division (see example later)

Christophe Dubach Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

Arithmetic Instructions

Most use three operands

All operands are registered (no memory access)

All operands are 4 bytes (a word)

Christophe Dubach Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

Arithmetic Instructions

add $t0 ,$t1 ,$t2

$t0 = $t1 + $t2;

add as signed (2’s complement) integers

sub $t2 ,$t3 ,$t4 # $t2 = $t3 - $t4

addi $t2 ,$t3 , 5 # $t2 = $t3 + 5; "add immediate"

addu $t1 ,$t6 ,$t7 # $t1 = $t6 + $t7; add as unsigned integers

subu $t1 ,$t6 ,$t7 # $t1 = $t6 + $t7; subtract as unsigned integers

mult $t3 ,$t4

multiply 32-bit quantities in $t3 and $t4 , and store 64-bit

result in special registers Lo and Hi: (Hi ,Lo) = $t3 * $t4

div $t5 ,$t6

Lo = $t5 / $t6 (integer quotient)

Hi = $t5 mod $t6 (remainder)

mfhi $t0

move quantity in special register Hi to $t0: $t0 = Hi

mflo $t1

move quantity in special register Lo to $t1: $t1 = Lo

move $t2 ,$t3 # $t2 = $t3

Christophe Dubach Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

Load / Store Instructions

Memory access only allowed with explicit load and store
instructions (load/store architecture)

All other instructions use register operands

Load

lw register_destination, mem_source

copy a word (4 bytes) at source memory location to
destination register
lb register_destination, mem_source

copy a byte to low-order byte of destination register (sign
extend higher-order bytes)
li register_destination, value

load immediate value into destination register

Christophe Dubach Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

Load / Store Instructions

Store

sw register_source, mem_destination

store a word (4 bytes) from source register to memory location
sb register_source, mem_destination

store a byte (low-order) from source register to memory
location

Example

.data

var1: .word 23 # declare storage for var1; initial value is 23

.text

lw $t0 , var1 # load contents of mem location into register $t0: $t0 = 23

li $t1 , 5 # $t1 = 5 ("load immediate ")

sw $t1 , var1 # store contents of $t1 into mem: var1 = 5

Christophe Dubach Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

Indirect and Based Addressing

load address:

la $t0, var1

copy memory address of var1 into register $t0

indirect addressing:

lw $t1, ($t0)

load word at memory address contained in $t0 into $t2
sw $t2, ($t0)

store word in register $t2 into memory at address contained in
$t0

based/indexed addressing (useful for field access in struct):

lw $t2, 4($t0)

load word at memory address ($t0+4) into register $t2
sw $t2, -12($t0)

store content of register $t2 into memory at address ($t0-12)

Christophe Dubach Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

Indirect and Based Addressing

Example

.data

array1: .space 12 # declare 12 bytes of storage

.text

la $t0 , array1 # load base address of array into $t0

li $t1 , 5 # $t1 = 5 ("load immediate ")

sw $t1 , ($t0) # first array element set to 5

li $t1 , 13 # $t1 = 13

sw $t1 , 4($t0) # second array element set to 13

li $t1 , -7 # $t1 = -7

sw $t1 , 8($t0) # third array element set to -7

Christophe Dubach Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

Exercise

Write the assembly program corresponding to the following C code:

struct point_t {

int x;

int y;

}

void main() {

struct point_t p;

int arr [12];

p.x = 2;

p.y = 4;

arr[3] = 6;

}

Christophe Dubach Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

Control structures

Branches:

b target # unconditional branch to target

beq $t0 ,$t1 ,target # branch to target if $t0 = $t1

blt $t0 ,$t1 ,target # branch to target if $t0 < $t1

ble $t0 ,$t1 ,target # branch to target if $t0 <= $t1

bgt $t0 ,$t1 ,target # branch to target if $t0 > $t1

bge $t0 ,$t1 ,target # branch to target if $t0 >= $t1

bne $t0 ,$t1 ,target # branch to target if $t0 <> $t1

All branch instructions use a target label: example

addi $t0 , $zero , 0 # t0 = 0

addi $t1 , $zero , 10 # t1 = 10

loop:

addi $t0 , $t0 , 1 # t0 = t0+1

blt $t0 , $t1 , loop # branch to loop if t0 <t1 (t0 <10)

Christophe Dubach Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

Control structures

Jumps:

j target

unconditional jump to program label target

jr $t3

jump to address contained in $t3 ("jump register ")

Subroutine (function) call:
jal label # "jump and link"

copy program counter (return address) to register $ra (return
address register)
jump to program instruction at label

jr $ra # "jump register"

jump to return address in $ra (stored by jal instruction)

In case of nested function calls, the return address should be
saved to the stack and restored accordingly.

Christophe Dubach Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

System Calls

System calls are used to interface with the operating systems. For
instance input/output or dynamic memory allocation.
Using system calls:

1 load the service number in register $v0
2 load argument values in $a0, $a1, . . .
3 issue the syscall instruction
4 retrieve return value if any

Example: printing integer on the console

li $v0 , 1

service 1 is print integer

add $a0 , $t0 , $zero

load desired value into argument register $a0

syscall
Christophe Dubach Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

System calls tables:

Service $v0 Arguments Result
print integer 1 $a0 = integer to print
print string 4 $a0 = address of null-

terminated string to print
print character 11 $a0 = character to print
read integer 5 $v0 = integer read
read character 12 $v0 = character read
allocate heap
memory

9 $a0 = number of bytes to
allocate

$v0 = address of
allocated memory

Christophe Dubach Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

Next lecture:

Introduction to Code Generation

Christophe Dubach Compiling Techniques

	Overview
	Registers
	Instructions
	Arithmetic
	Memory
	Control Structures
	System Calls

