
How is the course structured?
What is a compiler?

Why studying compilers?

Compiling Techniques
Lecture 1: Introduction

Christophe Dubach

20 September 2016

Christophe Dubach Compiling Techniques



How is the course structured?
What is a compiler?

Why studying compilers?

Table of contents

1 How is the course structured?

2 What is a compiler?

3 Why studying compilers?

Christophe Dubach Compiling Techniques



How is the course structured?
What is a compiler?

Why studying compilers?

Essential Facts

Lecturer: Christophe Dubach (christophe.dubach@ed.ac.uk)

Office hours: Thursdays 11am-12pm

Textbook (not strictly required):
Keith Cooper & Linda Torczon: Engineering a Compiler
Elsevier, 2004
Textbook can be reused in UG4 Compiler Optimisation

Course website:
http://www.inf.ed.ac.uk/teaching/courses/ct/

Discussion forum:
https://piazza.com/ed.ac.uk/winter2017/ct/

Action

Create an account and subscribe to the course on piazza.

Evaluation: no exam, coursework only

Christophe Dubach Compiling Techniques

mailto:christophe.dubach@ed.ac.uk
http://www.inf.ed.ac.uk/teaching/courses/ct/
https://piazza.com/ed.ac.uk/winter2017/ct/


How is the course structured?
What is a compiler?

Why studying compilers?

Difference from last year

Course is now 20 credits

Expect much more work

Language will be more complex and target will be real
machine assembly

3 hours of lectures per week + 1.5 hours labs

Extra LLVM-based assignment (use C/C++)

Will be taught by visiting Professor
from Microsoft Research

Very practical knowledge to anyone
interested in compiler industry

Christophe Dubach Compiling Techniques



How is the course structured?
What is a compiler?

Why studying compilers?

Coursework

There will be two distinct coursework assignments.

1 Write a full compiler from scratch (70% of total mark)
Will be written in Java
For a subset of C
(includes pointers, recursion, structs, memory allocation, ...)
Backend will target a real RISC assembly
Generated code executable in a simulator
Three deadlines:

week 4 (20%) Parser
week 6 (20%) Abstract Syntax Tree (AST) + Semantic
Analyser
week 9 (30%) Code generator

2 Write a new compiler pass in an existing compiler
(30% of total mark)

LLVM-based
one deadline: week 1 semester 2 (30%)

Christophe Dubach Compiling Techniques



How is the course structured?
What is a compiler?

Why studying compilers?

Coursework is challenging

Coursework requires good programming skills

Java for 1st assignment + basic knowledge of C

C/C++ for 2nd assignment

E.g. exceptions, recursion, Java collections classes,
inheritance, ...

Assumes basic knowledge of Unix command line and build system
(can be learnt on the fly to some extend)

cp, mv, ls, ...

ant, makefile

Git will be used for the coursework (will be learnt on your own)

Christophe Dubach Compiling Techniques



How is the course structured?
What is a compiler?

Why studying compilers?

Coursework marking and labs

Automated system to evaluate coursework
Mark is a function of how many programs compile successfully
Nightly build of your code with scoreboard

Will rely on git/bitbucket

Action

Create an account on http://bitbucket.org

send account id via Google form:
https://goo.gl/forms/PVAh0bmCZOqICZU92

mandatory demo; if no demo → mark = 0

Labs here to help with coursework in sessions of 1.5 hour

Group1 : Friday 15:00 - 16:30, Forrest Hill, Room 3.D02
Group2 : Friday 16:30 - 18:00, Forrest Hill, Room 3.D02

Labs start this week and end on week 11.

Christophe Dubach Compiling Techniques

http://bitbucket.org
https://goo.gl/forms/PVAh0bmCZOqICZU92


How is the course structured?
What is a compiler?

Why studying compilers?

Coursework is also rewarding

You will understand what happens when you type: $ gcc hello.c

But also:

Will deepened your understanding of computing systems
(from language to hardware)

Will improve your programming skills

Will learn about using revision control system (git)

Christophe Dubach Compiling Techniques



How is the course structured?
What is a compiler?

Why studying compilers?

Class-taking Technique

Extensive use of projected material

Attendance and interaction encouraged
Feedback also welcome

Reading book is optional
(course is self-content, book is more theoretical)

Not a programming course!

Start the practical early

Help should be sought on Piazza in the first instance

Christophe Dubach Compiling Techniques



How is the course structured?
What is a compiler?

Why studying compilers?

Syllabus

Overview

Scanning

Parsing

Abstract Syntax Tree

Semantic analysis

Code generation

Virtual machines (Java) Bytecode
Real machines assembly

LLVM compiler infrastructure (Aaron Smith from MSR)

Advanced topics

Instruction selection
register allocation

Christophe Dubach Compiling Techniques



How is the course structured?
What is a compiler?

Why studying compilers?

Compilers

What is a compiler?

A program that translates an executable program in one language
into an executable program in another language.
The compiler might improve the program, in some way.

What is an interpreter?

A program that directly execute an executable program, producing
the results of executing that program

Examples:

C is typically compiled

R is typically interpreted

Java is compiled to bytecode, then interpreted or compiled
(just-in-time) within a Java Virtual Machine (JVM)

Christophe Dubach Compiling Techniques



How is the course structured?
What is a compiler?

Why studying compilers?

A Broader View

Compiler technology = Off-line processing

Goals: improved performance and language usability

Making it practical to use the full power of the language

Trade-off: preprocessing time versus execution time (or space)

Rule: performance of both compiler and application must be
acceptable to the end user

Examples:

Macro expansion / Preprocessing

Database query optimisation

Javascript just-in-time compilation

Emulation acceleration: TransMeta code morphing

Christophe Dubach Compiling Techniques



How is the course structured?
What is a compiler?

Why studying compilers?

Why study compilation?

Compilers are important system software components:
they are intimately interconnected with architecture, systems,
programming methodology, and language design

Compilers include many applications of theory to practice:
scanning, parsing, static analysis, instruction selection

Many practical applications have embedded languages:
commands, macros, formatting tags

Many applications have input formats that look like languages:
Matlab, Mathematica

Writing a compiler exposes practical algorithmic &
engineering issues:
approximating hard problems; efficiency & scalability

Christophe Dubach Compiling Techniques



How is the course structured?
What is a compiler?

Why studying compilers?

Intrinsic interest

Compiler construction involves ideas from many different parts of
computer science

Artificial intelligence Greedy algorithms
Heuristic search techniques

Algorithms Graph algorithms
Dynamic programming

Theory DFA & PDA, pattern matching
Fixed-point algorithms

Systems Allocation & naming
Synchronisation, locality

Architecture Pipeline & memory hierarchy management
Instruction set

Software engineering Design pattern (visitor)
Code organisation

Christophe Dubach Compiling Techniques



How is the course structured?
What is a compiler?

Why studying compilers?

Intrinsic merit

Compiler construction poses challenging and interesting problems:

Compilers must do a lot but also run fast

Compilers have primary responsibility for run-time performance

Compilers are responsible for making it acceptable to use the
full power of the programming language

Computer architects perpetually create new challenges for the
compiler by building more complex machines

Compilers must hide that complexity from the programmer

Success requires mastery of complex interactions

Christophe Dubach Compiling Techniques



How is the course structured?
What is a compiler?

Why studying compilers?

Making languages usable

It was our belief that if FORTRAN, during its first months, were to
translate any reasonable ”scientific” source program into an object
program only half as fast as its hand coded counterpart, then
acceptance of our system would be in serious danger.
. . .
I believe that had we failed to produce efficient programs, the
widespread use of languages like FORTRAN would have been
seriously delayed.

John Backus (1978)

Christophe Dubach Compiling Techniques



How is the course structured?
What is a compiler?

Why studying compilers?

Next lecture

The View from 35000 Feet

How a compiler works

What I think is important

What is hard and what is easy

Christophe Dubach Compiling Techniques


	How is the course structured?
	What is a compiler?
	Why studying compilers?

