Compiling Techniques

Lecture 3: Introduction to Lexical Analysis

Christophe Dubach

29 September 2015

Christophe Dubach Compiling Techniques

Coursework - Announcement

@ Coursework description is updated regularly; check frequently
or “watch” http://bitbucket.org/cdubach/ct-15-16/
@ Make sure you commit and push your changes back into your
remote bitbucket repository daily
o Otherwise, your coursework will not be marked!
@ To learn about using git:
http://www.atlassian.com/git/tutorials/

o Getting Started — Saving changes — git add, git commit
o Collaborating — Syncing — git push

Christophe Dubach Compiling Techniques

http://bitbucket.org/cdubach/ct-15-16/
http://www.atlassian.com/git/tutorials/

The Lexer

Lexer

Source <]char [L token[Parser] AST, f S ic] AST f IR IR
code _.(1 J l) l l J l Anallyser J l Genelrator]_’
| |

Errors

@ Maps character stream into words — the basic unit of syntax

@ Assign a syntactic category to each work (part of speech)

o x = x + y; becomes ID(x) EQ ID(x) PLUS ID(y) SC
o word = lexeme

e syntactic category = part of speech

e In casual speech, we call the pair a token

@ Typical tokens: number, identifier, +, —, new, while, if, ...

@ Scanner eliminates white space (including comments)

Christophe Dubach Compiling Techniques

Table of contents

@ Languages and Syntax
@ Context-free Language
@ Regular Expression
@ Regular Languages

@ Lexical Analysis
@ Building a Lexer
@ Ambiguous Grammar

Christophe Dubach Compiling Techniques

Context-free Language
Regular Expression
Regular Languages

Languages and Syntax

Context-free Language

Context-free syntax is specified with a grammar
@ SheepNoise — SheepNoise baa | baa

@ This grammar defines the set of noises that a sheep makes
under normal circumstances

It is written in a variant of BackusNaur Form (BNF)

Formally, a grammar G = (S,N,T,P)
@ S is the start symbol
@ N is a set of non-terminal symbols
@ T is a set of terminal symbols or words
°

P is a set of productions or rewrite rules (P:N — N U T)

Christophe Dubach Compiling Techniques

Context-free Language
Regular Expression
Regular Languages

Languages and Syntax

Example

1 | goal — expr
§ expr _T :(rpn: op term S = goal
T = {number,id,+,—}
4 |term — number
5 | id N = {goal ,expr, term,op}
6 |op N P=4{1,2,3,4,5,6,7}
7 | —

@ This grammar defines simple expressions with addition &
subtraction over “number” and “id"

@ This grammar, like many, falls in a class called “context-free
grammars”’, abbreviated CFG

Christophe Dubach Compiling Techniques

Context-free Language
Regular Expression
Regular Languages

Languages and Syntax

Regular Expression

Grammars can often be simplified and shortened using an
augmented BNF notation where:

@ xx is the Kleene closure : zero or more occurrences of x
@ x+ is the positive closure : one or more occurrences of x

@ [x] is an option: zero or one occurrence of x

Example: identifier syntax

identifier ::= letter (letter | digit)x
digit ="0" | ... | "9
letter - | ‘ " | A" | ‘ ngn

Christophe Dubach Compiling Techniques

Context-free Language
Regular Expression
Regular Languages

Languages and Syntax

Exercise: write the grammar of signed natural number

Christophe Dubach Compiling Techniques

Context-free Language
Regular Expression
Regular Languages

Languages and Syntax

Regular Language

Definition
A language is regular if it can be expressed with a single regular
expression or with multiple non-recursive regular expressions.

@ Regular languages can used to specify the words to be
translated to tokens by the lexer.

@ Regular languages can be recognised with finite state machine.

@ Using results from automata theory and theory of algorithms,
we can automatically build recognisers from regular
expressions.

Christophe Dubach Compiling Techniques

Context-free Language
Regular Expression
Regular Languages

Languages and Syntax

Regular language to program

Given the following:
@ c is a lookahead character;
@ next() consumes the next character;
@ error () quits with an error message; and

@ first (exp) is the set of initial characters of exp.

Christophe Dubach Compiling Techniques

Context-free Language
Regular Expression
Regular Languages

Languages and Syntax

Regular language to program

Then we can build a program to recognise a regular language if the
grammar is left-parsable.

RE pr(RE)
“x'! if (c =='x") next() else error ();
(exp) pr(exp));
[exp] if (c in first (exp)) pr(exp);
exp* while (c in first (exp)) pr(exp);
exp+ pr(exp); while (c in first (exp)) pr(exp);
facty ... fact, pr(factl); ... ; pr(factn);
switch (c) {
case ¢ in first(terml) : pr(terml);
" ¢ case ... Do ;
ermy| ... [term, case c in first(termn) : pr(termn);
default : error();
}

Christophe Dubach Compiling Techniques

Context-free Language
Regular Expression
Regular Languages

Languages and Syntax

Definition: left-parsable

A grammar is left-parsable if:
termy|. .. |term, | The terms do not share any initial symbols.
facty ... fact, If fact; contains the empty symbol then fact;_;
and factj; 1 do not share any common initial
symbols.
[exp], expx The initial symbols of exp cannot contain a sym-
bol which belong to the first set of an expression
following exp.

Christophe Dubach Compiling Techniques

Context-free Language
Regular Expression
Regular Languages

Languages and Syntax

Example: Recognising identifiers

void ident () {
if (c is in [a—zA-Z])
letter ();
else
error ();
while (c is in [a—zA-Z0-9]) {
switch (c) {
case c is in [a—zA—Z] letter ();
case c is in [0—9] digit ();
default error ();
}
}
}
void letter() {...}
void digit() {...}

Christophe Dubach

Compiling Techniques

Context-free Language

Languages and Syntax ek Emeetnr

Regular Languages

Example: Simplified Java version

void ident () {
if (Character.islLetter(c))
next ();
else
error ();
while (Character.isLetterOrDigit(c))
next ();

Christophe Dubach Compiling Techniques

Building a Lexer
Lexical Analysis Ambiguous Grammar

Role of lexical analysiser

The main role of the lexical analyser (or lexer) is to read a bit of
the input and return a lexeme (or token).

class Lexer {
public Token nextToken() {
// return the next token, ignoring white spaces

}
}

White spaces are usually ignored by the lexer. White spaces are:

@ white characters (tabulation, newline, ...)

e comments (any character following "//" or enclosed between
H/*H ar]d H*/H

Christophe Dubach Compiling Techniques

Building a Lexer
Lexical Analysis Ambiguous Grammar

What is a token?

A token consists of a token class and other additional information.

Example: some token classes

IDENTIFIER
NUMBER
STRING_LITERAL
EQ

ASSIGN

PLUS

LPAR

foo, main, cnt,
0, —12, 1000,
"Hello world!”, "a",

L4 L bd L
Nk

class Token {
TokenClass tokenClass; // Java enumeration
String data; // stores number or string
Position pos; // line/column number in source

Christophe Dubach Compiling Techniques

Building a Lexer

Lexical Analysis Ambiguous Grammar

Example

Given the following C program:

int foo(int i) {
return i-+2;
}

the lexer will return:

INT IDENTIFIER(” foo”) LPAR INT IDENTIFIER(" i") RPAR LBRA
RETURN IDENTIFIER(" i") PLUS NUMBER("2") SEMICOLON
RBRA

Christophe Dubach Compiling Techniques

Building a Lexer
Lexical Analysis Ambiguous Grammar

A Lexer for Simple Arithmetic Expressions

Example: BNF syntax

identifier ::= letter (letter | digit)x

digit = "0" | ... | "9

letter = "a” | ... | "z" | AT | .. | 2T
number = digit+

plus o= "4

minus ="

Christophe Dubach Compiling Techniques

Building a Lexer
Lexical Analysis Ambiguous Grammar

Example: token definition

class Token {

enum TokenClass {

IDENTIFIER
NUMBER,
PLUS,
MINUS,

b

// fields

final TokenClass tokenClass;
final String data;
final Position position;

// constructors
Token(TokenClass tc) {...}
Token(TokenClass tc, String data) {...}

Christophe Dubach Compiling Techniques

Building a Lexer

Lexical Analysis Ambiguous Grammar

Example: tokeniser implementation

class Tokeniser {

Scanner scanner;
Token next() {
char ¢ = scanner.next();

// skip white spaces
if (Character.isWhitespace(c)) return next();

if (c

('+') return new Token(TokenClass.PLUS);
if (c -

) return new Token(TokenClass.MINUS);

// identifier
if (Character.isLetter(c)) {
StringBuilder sb = new StringBuilder ();
sb.append(c);
c = scanner.peek ();
while (Character.isLetterOrDigit(c)) {
sb.append(c);
scanner.next ();
c = scanner.peek();

return new Token(TokenClass.IDENTIFIER, sb.toString());

Techniques

Building a Lexer

Lexical Analysis Ambiguous Grammar

Example: continued

// number
if (Character.isDigit(c)) {
StringBuilder sb = new StringBuilder ();
sb.append(c);
¢ = scanner.peek();
while (Character.isDigit(c)) {
sb.append(c);
scanner.next ();
¢ = scanner.peek();

return new Token(TokenClass .NUMBER, sb.toString ());

Christophe ach Compiling Techniques

Building a Lexer

Lexical Analysis Ambiguous Grammar

Some grammars are ambiguous.

comment ::= "/«" .x "x/" | "//" .x NEWLINE
div n= "
Solution:

Longest matching rule
The lexer should produce the longest lexeme that corresponds to
the definition

Christophe Dubach Compiling Techniques

Building a Lexer
Lexical Analysis Ambiguous Grammar

Some grammars are ambiguous.

number

["="] digit+
digit 0" | ... | "9
plus 58 = P

noon

minus 28 =B Y=

Solution:

Delay to parsing stage

Remove the ambiguity and deal with it during parsing

number = digit+

digit = "0" | ... | 79"
plus soo= M4

minus 28 = ="

Christophe Dubach Compiling Techniques

Building a Lexer
Lexical Analysis Ambiguous Grammar

Next lecture

@ Automatic Lexer Generation

Christophe Dubach Compiling Techniques

	Languages and Syntax
	Context-free Language
	Regular Expression
	Regular Languages

	Lexical Analysis
	Building a Lexer
	Ambiguous Grammar

