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Coursework Demo: Friday 4th of December

@ In order to comply with the school regulations, you will have
to give a demonstration of your compiler.

@ There is nothing for you to prepare; we will simply ask you to
run your compiler and ask questions about your code to verify
you are the one who actually wrote it.

@ This demo will take place on Friday 4th of December between
1-5pm. We will organise a more detailed timetable using
doodle poll in the following days.

@ Attendance is mandatory; if we cannot see a demo, you will
fail the course.
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Boolean and Relational Values

Boolean and Relational Values

How should the compiler represent them?

It depends on the target machine

Several approaches:
@ Numerical representation
e Positional Encoding (e.g., Java ByteCode)

@ Conditional Move and Predication

Correct choice depends on both context and ISA (instruction set
architecture)
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Numerical Representation

@ Assign values to true and false, usually 1 and 0

@ Use comparison operator to get a value from a relational
expression

x <y cmp LT rx, ry — rl

cmp LT rx,ry—rl

if (x <vy) cbr rl —L1
stmtl stmt2
else br —Le
stmt2 L1: stmtl
Le:
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Boolean and Relational Values

Positional Encoding

What if the ISA does not provide comparison operators that
returns a value?

@ Must use conditional branch to interpret the result of a
comparison

@ Necessitates branches in the evaluation
@ This is the case for Java ByteCode (if-cmp<cond>)

Example: x<y

br LT rx,ry — Lt

loadl 0 — r2
br — L
Lr: loadl 1 — rl

LEZ

A
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Conditional Move and Predication

If the result is used to control an operation, then positional
encoding is not that bad.

Example

if (x <vy)
a=c¢+ d;
else

a—¢e + f;

Corresponding assembly code

Boolean comparison | Positional encoding
cmp LT rx,ry—rl br LT rx,ry—Lr
cbr rl — LT

add re,rf—ra
add re, rf—ra
o L br —Le
E .
Ly:add e = Lt:add rc,rd—ra
LE 500 o
Le:...

v
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Conditional Move and Predication

Conditional move and predication can simplify this code.

if (x <vy)
a=c¢c+ d;
else

a=¢e + f;

Corresponding assembly code

Conditional Move ‘ Predicated Execution
cmp_ LT  rx,ry—rl

add rc,rd—r2 CHLTT [2X 737 0
add reyrf—>r3 (r1)? add rc,rd—ra
cmov 1l r2’r3—>ra ('r1)? add re, rf—ra
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Last word on boolean and relational values: consider the following
code x = (a<b) & (c<d)

Corresponding assembly code

Positional encoding Boolean Comparison
br LT ra,rb—L;
br —)Lz
Li: br LT rc,rd—L3 cmp_LT ra,rb—rl
L,: loadl O —rx | cmp_LT rc,rd—r2
br —Le | and rl , r2—rx
L3: loadl 1 — rx
Le:

Here the boolean comparison produces much better code.

Best choice depends on two things

o Context

@ Hardware
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Control-Flow

o If-then-else
e Loops (for, while, ...)

@ Switch/case statements
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If-then-else
Loops

I-FI
Control-Flow Case Statement

Follow the model for evaluating relational and boolean with
branches.

Branching versus predication (e.g., IA-64, ARM ISA) trade-off:

@ Frequency of execution:
uneven distribution, try to speedup common case
@ Amount of code in each case:
unequal amounts means predication might waste issue slots

@ Nested control flow:
any nested branches complicates the predicates and makes
branching attractive
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If-then-else
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I-FI
Control-Flow Case Statement

Basic pattern

|

Pre-test @ evaluate condition before the loop
] (if needed)
Loop body @ evaluate condition after the loop
] @ branch back to the top (if needed)
Post-test while, for and do while loops all fit this
l basic model.
Next block

|
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If-then-else
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Corresponding assembly

loadl 1 — rl
. . . loadl 100 — r2
for {045 J<loms Gi) | b T L, 02 — L2
, body Lilg [l

- addl r1,1 — rl
next stm br LT rl1,r2 — L1
L2: next stmt

Example: for loop
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If-then-else
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I-FI
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Exercise

Write the assembly code for the following while loop:

while (x >=y) {
body
}

next stmt
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If-then-else
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I-FI
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Most modern programming languages include a break statements

@ Exits from the innermost control-flow statement
e Out of the innermost loop
e Out of a case statement

@ Solution:

e use an unconditional branch to the next statement following
the control-flow construct (loop or case statement).
o skip or continue statement branch to the next iteration (start

of the loop)
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Control-Flow

Case Statement (switch)

Case statement . .
Evaluate the controlling expression

o

switch (c) { @ Branch to the selected case

case 'a’': stmtl;

case 'b’': stmt2: break: © Execute the code for that case

case 'c': stmt3; @ Branch to the statement after the
¥ case

Part 2 is key. ]
Strategies:

@ Linear search (nested if-then-else)
@ Build a table of case expressions and use binary search on it

@ Directly compute an address (requires dense case set)
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If-then-else
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Knowing that the character 'a' corresponds to the decimal value
97 (ASCII table), write the assembly code for the example below
using linear search.
char c;
switch (c¢) {
case 'a': stmtl;
case 'b’': stmt2; break;
case 'c’': stmt3; break;
case 'd’': stmt4;
}
stmtb;
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If-then-else
Loops

I-FI
Control-Flow Case Statement

Instruction selection
@ Peephole Matching

@ Tree-pattern matching
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