Compiling Techniques
Lecture 12: Code Shapes
(EaC Chapter 7)

Christophe Dubach

17 November 2015

Christophe Dubach Compiling Techniques

Coursework Demo: Friday 4th of December

@ In order to comply with the school regulations, you will have
to give a demonstration of your compiler.

@ There is nothing for you to prepare; we will simply ask you to
run your compiler and ask questions about your code to verify
you are the one who actually wrote it.

@ This demo will take place on Friday 4th of December between
1-5pm. We will organise a more detailed timetable using
doodle poll in the following days.

@ Attendance is mandatory; if we cannot see a demo, you will
fail the course.

Christophe Dubach Compiling Techniques

Table of contents

@ Boolean and Relational Values
@ Numerical Representation
@ Positional Encoding
@ Conditional Move and Predication

© Control-Flow
o If-then-else
@ Loops
@ Case Statement

Christophe Dubach Compiling Techniques

Numerical Representation
Positional Encoding
Conditional Move and Predication

Boolean and Relational Values

Boolean and Relational Values

How should the compiler represent them?

It depends on the target machine

Several approaches:
@ Numerical representation
e Positional Encoding (e.g., Java ByteCode)

@ Conditional Move and Predication

Correct choice depends on both context and ISA (instruction set
architecture)

Christophe Dubach Compiling Techniques

. Numerical Representation
Boolean and Relational Values o pres
Positional Encoding

Conditional Move and Predication

Numerical Representation

@ Assign values to true and false, usually 1 and 0

@ Use comparison operator to get a value from a relational
expression

x <y cmp LT rx, ry — rl

cmp LT rx,ry—rl

if (x <vy) cbr rl —L1
stmtl stmt2
else br —Le
stmt2 L1: stmtl
Le:

Christophe Dubach

Compiling Techniques

Numerical Representation
Positional Encoding
Conditional Move and Predication

Boolean and Relational Values

Positional Encoding

What if the ISA does not provide comparison operators that
returns a value?

@ Must use conditional branch to interpret the result of a
comparison

@ Necessitates branches in the evaluation
@ This is the case for Java ByteCode (if-cmp<cond>)

Example: x<y

br LT rx,ry — Lt

loadl 0 — r2
br — L
Lr: loadl 1 — rl

LEZ

A

Christophe Dubach Compiling Techniques

Numerical Representation
Positional Encoding

Boolean and Relational Values

Conditional Move and Predication

If the result is used to control an operation, then positional
encoding is not that bad.

Example

if (x <vy)
a=c¢+ d;
else

a—¢e + f;

Corresponding assembly code

Boolean comparison | Positional encoding
cmp LT rx,ry—rl br LT rx,ry—Lr
cbr rl — LT

add re,rf—ra
add re, rf—ra
o L br —Le
E .
Ly:add e = Lt:add rc,rd—ra
LE 500 o
Le:...

v

Christophe Dubach Compiling Techniques

. Numerical Representation
Boolean and Relational Values o pres
Positional Encoding

Conditional Move and Predication

Conditional Move and Predication

Conditional move and predication can simplify this code.

if (x <vy)
a=c¢c+ d;
else

a=¢e + f;

Corresponding assembly code

Conditional Move ‘ Predicated Execution
cmp_ LT rx,ry—rl

add rc,rd—r2 CHLTT [2X 737 0
add reyrf—>r3 (r1)? add rc,rd—ra
cmov 1l r2’r3—>ra ('r1)? add re, rf—ra

Christophe Dubach Compiling Techniques

. Numerical Representation
Boolean and Relational Values N p

Positional Encoding
Conditional Move and Predication

Last word on boolean and relational values: consider the following
code x = (a<b) & (c<d)

Corresponding assembly code

Positional encoding Boolean Comparison
br LT ra,rb—L;
br —)Lz
Li: br LT rc,rd—L3 cmp_LT ra,rb—rl
L,: loadl O —rx | cmp_LT rc,rd—r2
br —Le | and rl , r2—rx
L3: loadl 1 — rx
Le:

Here the boolean comparison produces much better code.

Best choice depends on two things

o Context

@ Hardware

Christophe Dubach Compiling Techniques

If-then-else
Loops

I-FI
Control-Flow Case Statement

Control-Flow

o If-then-else
e Loops (for, while, ...)

@ Switch/case statements

Christophe Dubach Compiling Techniques

If-then-else
Loops

I-FI
Control-Flow Case Statement

Follow the model for evaluating relational and boolean with
branches.

Branching versus predication (e.g., IA-64, ARM ISA) trade-off:

@ Frequency of execution:
uneven distribution, try to speedup common case
@ Amount of code in each case:
unequal amounts means predication might waste issue slots

@ Nested control flow:
any nested branches complicates the predicates and makes
branching attractive

Christophe Dubach Compiling Techniques

If-then-else
Loops

I-FI
Control-Flow Case Statement

Basic pattern

|

Pre-test @ evaluate condition before the loop
] (if needed)
Loop body @ evaluate condition after the loop
] @ branch back to the top (if needed)
Post-test while, for and do while loops all fit this
l basic model.
Next block

|

Christophe Dubach Compiling Techniques

If-then-else
Loops

I-Fl
Control-Flow Case Statement

Corresponding assembly

loadl 1 — rl
. . . loadl 100 — r2
for {045 J<loms Gi) | b T L, 02 — L2
, body Lilg [l

- addl r1,1 — rl
next stm br LT rl1,r2 — L1
L2: next stmt

Example: for loop

Christophe Dubach Compiling Techniques

If-then-else
Loops

I-FI
Control-Flow Case Statement

Exercise

Write the assembly code for the following while loop:

while (x >=y) {
body
}

next stmt

Christophe Dubach Compiling Techniques

If-then-else
Loops

I-FI
Control-Flow Case Statement

Most modern programming languages include a break statements

@ Exits from the innermost control-flow statement
e Out of the innermost loop
e Out of a case statement

@ Solution:

e use an unconditional branch to the next statement following
the control-flow construct (loop or case statement).
o skip or continue statement branch to the next iteration (start

of the loop)

Christophe Dubach Compiling Techniques

If-then-else
Loops
Case Statement

Control-Flow

Case Statement (switch)

Case statement . .
Evaluate the controlling expression

o

switch (c) { @ Branch to the selected case

case 'a’': stmtl;

case 'b’': stmt2: break: © Execute the code for that case

case 'c': stmt3; @ Branch to the statement after the
¥ case

Part 2 is key.]
Strategies:

@ Linear search (nested if-then-else)
@ Build a table of case expressions and use binary search on it

@ Directly compute an address (requires dense case set)

Christophe Dubach Compiling Techniques

If-then-else
Loops

I-FI
Control-Flow Case Statement

Knowing that the character 'a' corresponds to the decimal value
97 (ASCII table), write the assembly code for the example below
using linear search.
char c;
switch (c¢) {
case 'a': stmtl;
case 'b’': stmt2; break;
case 'c’': stmt3; break;
case 'd’': stmt4;
}
stmtb;

Christophe Dubach Compiling Techniques

If-then-else
Loops

I-FI
Control-Flow Case Statement

Instruction selection
@ Peephole Matching

@ Tree-pattern matching

Christophe Dubach Compiling Techniques

	Boolean and Relational Values
	Numerical Representation
	Positional Encoding
	Conditional Move and Predication

	Control-Flow
	If-then-else
	Loops
	Case Statement

