Compiler Optimisation

Dataflow Analysis

Hugh Leather
IF 1.18a
hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics
University of Edinburgh

2019

Hugh Leather

Introduction

This lecture:

@ More data flow examples
@ Dominance

@ Static single-assignment form

Hugh Leather

Liveness

@ A variable v is live-out of statement s if
v is used along some control path starting at s

@ Otherwise, we say that v is dead
@ A variable is live if it holds a value that may be needed in the
future

Information flows backwards from statement to predecessors
Liveness useful for optimisations (e.g. register allocation, store
elimination, dead code...)

Liveness

A variable v is live-out of statement s if v is used along some
control path starting at s

Liveness

A variable v is live-out of statement s if v is used along some
control path starting at s

Liveness

A variable v is live-out of statement s if v is used along some
control path starting at s

Liveness

A variable v is live-out of statement s if v is used along some
control path starting at s

Liveness

A variable v is live-out of statement s if v is used along some
control path starting at s

Liveness

} Note: x, y used
. {X r YJ butnot defined

A variable v is live-out of statement s if v is used along some
control path starting at s

Liveness

Note: b, c defined
but not used,

SO Sy, S; Useless,
if removed s,, s; useless

A variable v is live-out of statement s if v is used along some
control path starting at s

Liveness

@ Live variables come up from their successors using them

Out(s)=|J In(n)

VneSucc(s)
@ Transfer back across the node
In(s) = Out(s) — Kill(s) U Gen(s)
@ Used variables are live
Gen(s) = {u such that v is used in s}

@ Defined but not used variables are killed
Kill(s) = {d such that d is defined in s but not used in s}

@ If we don’t know, start with empty
Init(s) = @

Others

Constant propagation - show variable has same constant value
at some point

e Strictly speaking does not compute expressions
except x := const, or x := y and y is constant

e Often combined with constant folding that computes
expressions

Copy propagation - show variable is copy of other variable
Available expressions - set of expressions reaching by all paths

Very busy expressions - expressions evaluated on all paths
leaving block - for code hoisting

Definite assignment - variable always assigned before use
Redundant expressions, and partial redundant expressions

Many more - read about them!

Dominators

CFG node b; dominates b;, written b; > b;,
iff every path from the start node to b; goes through b; }

Design data flow equations to compute
which nodes dominate each node

What direction?
What value set?
What transfer?
What Meet?
Initial values?

{bo,bs,b3}

(b2) {bo.b1.bs.be}

Dominators

CFG node b; dominates b;, written b; > b;,
iff every path from the start node to b; goes through b; }

Design data flow equations to compute
which nodes dominate each node

What direction?
What value set?
What transfer?
What Meet?
Initial values?

{bo,bs,b3}

(b2) {bo.b1.bs.be}

Dominators

CFG node b; dominates b;, written b; > b;,
iff every path from the start node to b; goes through b; }

Design data flow equations to compute
which nodes dominate each node

Direction: Forward
What value set?
What transfer?
What Meet?
Initial values?

{bo,bs,b3}

(b2) {bo.b1.bs.be}

Dominators

CFG node b; dominates b;, written b; > b;,
iff every path from the start node to b; goes through b; }

Design data flow equations to compute
which nodes dominate each node

Direction: Forward
What value set?
What transfer?
What Meet?
Initial values?

{bo,bs,b3}

(b2) {bo.b1.bs.be}

Dominators

CFG node b; dominates b;, written b; > b;,
iff every path from the start node to b; goes through b; }

Design data flow equations to compute
which nodes dominate each node

Direction: Forward
Values: Sets of nodes
What transfer?

What Meet?

Initial values?

{bo,bs,b3}

(b2) {bo.b1.bs.be}

Dominators

CFG node b; dominates b;, written b; > b;,
iff every path from the start node to b; goes through b; }

Design data flow equations to compute
which nodes dominate each node

Direction: Forward
Values: Sets of nodes
What transfer?
What Meet?

Initial values?

{bo,bs,b3}

(4] {061,656}

Dominators

CFG node b; dominates b;, written b; > b;,
iff every path from the start node to b; goes through b; }

Design data flow equations to compute
which nodes dominate each node

Direction: Forward

Values: Sets of nodes

Transfer: Out(n) = In(n) U {n}
What Meet?

Initial values?

{bo,bs,b3}

(b2) {bo.b1.bs.be}

Dominators

CFG node b; dominates b;, written b; > b;,
iff every path from the start node to b; goes through b; }

Design data flow equations to compute
which nodes dominate each node

Direction: Forward

Values: Sets of nodes

Transfer: Out(n) = In(n) U {n}
What Meet?

Initial values?

{bo,bs,b3}

(4] {061,656}

Dominators

CFG node b; dominates b;, written b; > b;,
iff every path from the start node to b; goes through b; }

Design data flow equations to compute
which nodes dominate each node

Direction: Forward

Values: Sets of nodes

Transfer: Out(n) = In(n) U {n}

Meet: In(n) =[] Out(s)
VnePred(s) {bo,b1,b3}

(4] {061,656}

Initial values?

Dominators

CFG node b; dominates b;, written b; > b;,
iff every path from the start node to b; goes through b; }

Design data flow equations to compute
which nodes dominate each node

Direction: Forward

Values: Sets of nodes

Transfer: Out(n) = In(n) U {n}

Meet: In(n) =[] Out(s)
VnePred(s) {bo,b1,b3}

(4] {061,656}

Initial values?

Dominators

CFG node b; dominates b;, written b; > b;,
iff every path from the start node to b; goes through b; }

Design data flow equations to compute
which nodes dominate each node

Direction: Forward
Values: Sets of nodes
Transfer: Out(n) = In(n) U {n}
Meet: In(n)= () Out(s)
Vn€EPred(s) {bo,b1,bs}
Initial: Init(ng) = {no}; Init(n) = all
(4] {bo.b1,bs.ba}

Dominators

Post-dominator

Node z is said to post-dominate a node n if all paths to the exit
node of the graph starting at n must go through z

Strict dominance
Node a strictly dominates b iff a>> bAa# b

Immediate dominator

idom(n) strictly dominates n but not any other node that strictly
dominates n

Dominator tree

Tree where node’s children are those it immediately dominates

Dominance frontier

DF(n) is set of nodes, d s.t. n dominates an immediate
predecessor of d, but n does not strictly dominate d

Dominators

Example: Dominator tree

by

Where are dominance frontiers?

{bo,bs,bs}

(b4 {bo.b1 bbi}

Dominators

Example: Dominator tree

m bs strictly

dominates
{be,b7,bg}

[b) {bob1,bs,ba}

DF(bs) = {b3}

Dominators

Example: Dominator tree

{bo,by,bs}

[b) {bob1,bs,ba}

DF(b1) = {b1}

Static single-assignment form (SSA)

@ Often allowing variable redefinition complicates analysis
@ In SSA:
e One variable per definition
Each use refers to one definition

]
o Definitions merge with ¢ functions
o O functions execute instantaneously in parallel

@ Used by or simplifies many analyses

Static single-assignment form (SSA)

Example: Intuitive conversion to SSA

Original CFG

Static single-assignment form (SSA)

Example: Intuitive conversion to SSA

Could be either

Rename multiple definitions of same variable

Static single-assignment form (SSA)

Example: Intuitive conversion to SSA

But 2, reaches s, and sg, too
Semantics changed

Repeatedly merge definitions with ¢

Static single-assignment form (SSA)

Example: Intuitive conversion to SSA

Now in SSA form

Static single-assignment form (SSA)
Types of SSA

@ Maximal SSA - Places ¢ node for variable x at every join
block if block uses or defines x

@ Minimal SSA - Places ¢ node for variable x at every join
block with 24 reaching definitions of x

@ Semipruned SSA - Eliminates ¢s not live across block
boundaries

@ Pruned SSA - Adds liveness test to avoid ¢s of dead
definitions

Static single-assignment form (SSA)

Conversion to SSA sketch?

@ For each definition! of x in block b, add ¢ for x in each block
in DF(b)

@ This introduces more definitions, so repeat

@ Rename variables

e Can be done in T(n) = O(n), if liveness cheap

!Different liveness tests (including none) here change SSA type
?See =EaC 9.3.1-9.3.4

Static single-assignment form (SSA)

Conversion from SSA sketch®

Cannot just remove ¢ nodes; optimisations make this unsafe
Place copy operations on incoming edges

Split edges if necessary

Delete ¢s

e 6 6 o6 o

Remove redundant copies afterwards

3See =EaC 9.3.5

Static single-assignment form (SSA)

Conversion from SSA

Example: Intuitive conversion from SSA

Original SSA CFG

Static single-assignment form (SSA)

Conversion from SSA

Example: Intuitive conversion from SSA

Cannot insert
az = a,
Actually fine here,
just for demo

Place copies

Static single-assignment form (SSA)

Conversion from SSA

Example: Intuitive conversion from SSA

Split where necessary

Static single-assignment form (SSA)

Conversion from SSA

Example: Intuitive conversion from SSA

Remove ¢s

Summary

@ More data flow examples
@ Dominance

@ Static single-assignment form

Hugh Leather

