
High-level view
Front End
Back end
Optimiser

Compiling Techniques
Lecture 2: The view from 35000 feet

Christophe Dubach

17 September 2019

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

Table of contents

1 High-level view

2 Front End
Passes
Representations

3 Back end
Instruction Selection
Register Allocation
Instruction Scheduling

4 Optimiser

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

High-level view of a compiler

Compiler Machine
code

Source
code

Errors

Must recognise legal (and illegal) programs

Must generate correct code

Must manage storage of all variables (and code)

Must agree with OS & linker on format for object code

Big step up from assembly language; use higher level notations

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

Traditional two-pass compiler

FrontEnd
Source
code

BackEnd
 
 

IR
 

Machine
Code

 
Errors

Use an intermediate representation (IR)

Front end maps legal source code into IR

Back end maps IR into target machine code

Admits multiple front ends & multiple passes

Typically, front end is O(n) or O(n log n), while back end is
NPC (NP-complete)

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

A common fallacy two-pass compiler

Frontend

Target 1

Fortran

Backend

Frontend

Target 2

R

Backend

Frontend

Target 3

Java

Backend

FrontendSmalltalk

Can we build n x m compilers with n+m components?
Must encode all language specific knowledge in each front end
Must encode all features in a single IR
Must encode all target specific knowledge in each back end
Limited success in systems with very low-level IRs (e.g. LLVM)
Active research area (e.g. Graal, Truffle)

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

Passes
Representations

The Frontend

Scanner
Source
code

Tokeniser
token

 
char

 Parser
AST

 
Semantic
Analyser

AST
 

Lexer

IR
Generator

IR
 

Errors

Recognise legal (& illegal) programs

Report errors in a useful way

Produce IR & preliminary storage map

Shape the code for the back end

Much of front end construction can be automated

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

Passes
Representations

The Lexer

Scanner
Source
code

Tokeniser
token

 
char

 Parser
AST

 
Semantic
Analyser

AST
 

Lexer

IR
Generator

IR
 

Errors

Lexical analysis

Recognises words in a character stream

Produces tokens (words) from lexeme

Collect identifier information

Typical tokens include number, identifier, +, –, new, while, if

Example: x=y+2; becomes
IDENTIFIER(x) EQUAL IDENTIFIER(y) PLUS CST(2)

Lexer eliminates white space (including comments)

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

Passes
Representations

The Parser

Scanner
Source
code

Tokeniser
token

 
char

 Parser
AST

 
Semantic
Analyser

AST
 

Lexer

IR
Generator

IR
 

Errors

Recognises context-free syntax & reports errors

Hand-coded parsers are fairly easy to build

Most books advocate using automatic parser generators

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

Passes
Representations

Semantic Analyser

Scanner
Source
code

Tokeniser
tokenchar

Parser
AST Semantic

Analyser
AST

Lexer

IR
Generator

IR

Errors

Guides context-sensitive (“semantic”) analysis

Checks variable and function declared before use

Type checking

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

Passes
Representations

IR Generator

Scanner
Source
code

Tokeniser
token

 
char

 Parser
AST

 
Semantic
Analyser

AST
 

Lexer

IR
Generator

IR
 

Errors

Generates the IR used by the rest of the compiler.

Sometimes the AST is the IR.

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

Passes
Representations

Simple Expression Grammar

1 goa l → exp r
2 exp r → exp r op term
3 | term
4 term → number
5 | i d
6 op → +
7 | −

S = goa l
T = {number , id ,+,−}
N = { goa l , expr , term , op}
P = {1 ,2 ,3 , 4 , 5 , 6 , 7}

This grammar defines simple expressions with addition &
subtraction over “number” and “id”

This grammar, like many, falls in a class called “context-free
grammars”, abbreviated CFG

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

Passes
Representations

Derivations

Given a CFG, we can derive sentences by repeated substitution

Production Result
goal

1 expr
2 expr op term
5 expr op y
7 expr - y
2 expr op term - y
4 expr op 2 - y
6 expr + 2 - y
3 term + 2 - y
5 x + 2 - y

To recognise a valid sentence in a CFG, we reverse this process and
build up a parse tree

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

Passes
Representations

Parse tree

x + 2 -y

goal

expr

op termexpr

op termexpr

term

id(x)

+ num(2)

- id(y)

This contains a lot of unnecessary information.

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

Passes
Representations

Abstract Syntax Tree (AST)

-

+

id(x) num(2)

id(y)

The AST summarises grammatical structure, without including
detail about the derivation.

Compilers often use an abstract syntax tree

This is much more concise

ASTs are one kind of intermediate representation (IR)

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

Instruction Selection
Register Allocation
Instruction Scheduling

The Back end

Instruction
Selection

AST
 

Register
Allocation

AST
 

Instruction
Scheduling

IR
 

Errors

Machine
code

 

Translate IR into target machine code

Choose instructions to implement each IR operation

Decide which value to keep in registers

Ensure conformance with system interfaces

Automation has been less successful in the back end

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

Instruction Selection
Register Allocation
Instruction Scheduling

Instruction Selection

Instruction
Selection

AST Register
Allocation

AST Instruction
Scheduling

IR

Errors

Machine
code

Produce fast, compact code

Take advantage of target features such as addressing modes

Usually viewed as a pattern matching problem

ad hoc methods, pattern matching, dynamic programming

Example: madd instruction

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

Instruction Selection
Register Allocation
Instruction Scheduling

Register Allocation

Instruction
Selection

AST
 

Register
Allocation

AST
 

Instruction
Scheduling

IR
 

Errors

Machine
code

 

Have each value in a register when it is used

Manage a limited set of resources

Can change instruction choices & insert LOADs & STOREs
(spilling)

Optimal allocation is NP-Complete (1 or k registers)

Graph colouring problem

Compilers approximate solutions to NP-Complete problems

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

Instruction Selection
Register Allocation
Instruction Scheduling

Instruction Scheduling

Instruction
Selection

AST
 

Register
Allocation

AST
 

Instruction
Scheduling

IR
 

Errors

Machine
code

 

Avoid hardware stalls and interlocks

Use all functional units productively

Can increase lifetime of variables (changing the allocation)

Optimal scheduling is NP-Complete in nearly all cases

Heuristic techniques are well developed

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

Three Pass Compiler

FrontEnd
Source
code

Middle
End

 
 

IR
 BackEnd Machine

Code
 

Errors

IR
 

Code Improvement (or Optimisation)

Analyses IR and rewrites (or transforms) IR

Primary goal is to reduce running time of the compiled code

May also improve space, power consumption, . . .

Must preserve meaning of the code

Measured by values of named variables

Subject of Compiler Optimisation course

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

The Optimiser

Modern optimisers are structured as a series of passes
e.g. LLVM

Opt
1

IR
 
 

IR
 

Errors

IR
 

Opt
2

IR
 IR

 

Opt
N

...

Discover & propagate some constant value

Move a computation to a less frequently executed place

Specialise some computation based on context

Discover a redundant computation & remove it

Remove useless or unreachable code

Encode an idiom in some particularly efficient form

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

Modern Restructuring Compiler

FrontEnd
Source
code

Middle
End

 
 

IR
 BackEnd Machine

Code
 

Errors

IR
 

IR
Generator

LL
AST

 

Restructurer
HL
AST

 

Translate from high-level (HL) IR to low-level (LL) IR

Blocking for memory hierarchy and register reuse

Vectorisation

Parallelisation

All based on dependence

Also full and partial inlining

Not covered in this course

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

Role of the runtime system

Memory management services

Allocate, in the heap or in an activation record (stack frame)
Deallocate
Collect garbage

Run-time type checking

Error processing

Interface to the operating system (input and output)

Support for parallelism (communication and synchronization)

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

Programs related to compilers

Pre-processor:
Produces input to the compiler
Processes Macro/Directives (e.g. #define, #include)

Assembler:
Translate assembly language to actual machine code (binary)
Performs actual allocation of variables

Linker:
Links together various compiled files and/or libraries
Generate a full program that can be loaded and executed

Debugger:
Tight integration with compiler
Uses meta-information from compiler (e.g. variable names)

Virtual Machines:
Executes virtual assembly
typically embedded a just-in-time (jit) compiler

Christophe Dubach Compiling Techniques



High-level view
Front End
Back end
Optimiser

Next lecture

Introduction to Lexical Analysis (real start of compiler course)

Decomposition of the input into a stream of tokens
Construction of scanners from regular expressions

Christophe Dubach Compiling Techniques


	High-level view
	Front End
	Passes
	Representations

	Back end
	Instruction Selection
	Register Allocation
	Instruction Scheduling

	Optimiser

