

Idea

 Data-flow analysis derives information about the dynamic behavior of a program by only examining the static code

Example

- How many registers do we need for the program on the right?
- Easy bound: the number of variables used (3)
- Better answer is found by considering the **dynamic** requirements of the program

1		a := 0	
2	L1:	b := a + 1	
3		c := c + b	1
4		a := b * 2	
5		if a < 9 g	oto L1
6		return c	

CS553 Lecture

Introduction to Data-flow Analysis

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Time Compl	exity	
Consider a pro	gram of size N	
– Has N node	es in the flow graph and at most N variables	
 Each live-in 	n or live-out set has at most N elements	
 Each set-ur 	ion operation takes O(N) time	
– The for loo	p body	
– constar	nt # of set operations per node	
- O(N) n	odes \Rightarrow O(N ²) time for the loop	
 Each iterati 	on of the repeat loop can only make the set larger	
 Each set ca 	n contain at most N variables $\Rightarrow 2N^2$ iterations	
Worst case:	O(N ⁴)	
Typical case:	2 to 3 iterations with good ordering & sparse sets $\Rightarrow O(N)$ to $O(N^2)$	
CS553 Lecture	Introduction to Data-flow Analysis	18

Concenta		
Concepts		
Liveness		
 Use in register 	allocation	
- Generating live	eness	
- Flow and direc	tion	
- Data-flow equa	tions and analysis	
- Complexity	5	
- Improving perf	formance (basic blocks, single variable, bit sets)
1 01		,
Control flow grap	hs	
 Predecessors at 	nd successors	
Defs and uses		
Conservative ann	oximation	
– Static versus d	vnamic liveness	
Stutie versus d		
CS553 Lecture	Introduction to Data-flow Analysis	24

