Data-flow Analysis

Idea

— Data-flow analysis derives information about the dynamic
behavior of a program by only examining the static code

Example

— How many registers do we need
for the program on the right? ! a =0

— Easy bound: the number of > Li: b a+l
variables used (3) . c c+b

— Better answer is found by 4 a :=b*2
considering the dynamic 5 if a < 9 goto L1
requirements of the program 6 return c

Liveness Analysis

Definition

— A variable is live at a particular point in the program if its value at that
point will be used in the future (dead, otherwise).
. To compute liveness at a given point, we need to look into the future

Motivation: Register Allocation
— A program contains an unbounded number of variables
—Must execute on a machine with a bounded number of registers

—Two variables can use the same register if they are never in use at the
same time (i.e, never simultaneously live).

.. Register allocation uses liveness information

Liveness by Example

What is the live range of b?

— Variable b is read in statement 1
4, so b is live on the (3 — 4)
edge 2

— Since statement 3 does not
assign into b, b is also live on 3
the (2—3) edge

— Statement 2 assigns b, so any 4
value of b on the (1—2) and (5—
2) edges are not needed, so b is

dead along these edges

b’s live range is (2—=3—4)

CS553 Lecture Introduction to Data-flow Analysis 5

Liveness by Example (cont)

Live range of a

— ais live from (1—2) and again from 1
(4—5—2)

- ais dead from (2—3—4)

Live range of b
- b s live from (2—=3—4)

Live range of ¢

— ¢ s live from
(entry—=>1—2—>3—>4—->5-2 5—6)

return c

Variables a and b are never simultaneously live, so they can share a register

CS553 Lecture Introduction to Data-flow Analysis 6

Control Flow Graphs (CFGs)

Definition

—A CFG is a graph whose nodes represent program statements and
whose directed edges represent control flow

Example
1 a =0
2 Ll: b a+1
3 c c+b
4 a :=b * 2
5 if a < 9 goto L1
6 return c
o return c_
CS553 Lecture Introduction to Data-flow Analysis 7
Terminology
Flow Graph Terms

— A CFG node has out-edges that lead to successor nodes and in-edges
that come from predecessor nodes

— pred[n] is the set of all predecessors of node n
succ[n] is the set of all successors of node n

Examples
— Out-edges of node 5: (5—6) and (5—2)
— succ[5]= {2,6}
— pred[5] = {4}
— pred[2] = {1,5}

return c

CS553 Lecture Introduction to Data-flow Analysis 8

Uses and Defs

Def (or definition) /

— An assignment of a value to a variable
— def[v] = set of CFG nodes that define variable v
— def[n] = set of variables that are defined at node n

— A read of a variable’s value

— use[v] = set of CFG nodes that use variable v —
— use[n] = set of variables that are used at node n
& deflv]
More precise definition of liveness
— A variable v is live on a CFG edge if

(1) 3 a directed path from that edge to a use of v (node in use[v]), and
(2) that path does not go through any def of v (no nodes in def[v])

CS553 Lecture Introduction to Data-flow Analysis 9

The Flow of Liveness

Data-flow

— Liveness of variables is a property that flows
through the edges of the CFG

Direction of Flow

— Liveness flows backwards through the CFG,
because the behavior at future nodes
determines liveness at a given node

— Consider a
— Consider b
— Later, we’ll see other properties
that flow forward o[Teturn c |

CS553 Lecture Introduction to Data-flow Analysis 10

program points

Liveness at Nodes

| edges)
<«— just before computation

We have liveness on edges

— How do we talk about

4— just after computation

liveness at nodes?

Two More Definitions
— A variable is live-out at a node if it is live on ah

edges 4

live-out

@out-eda 2 = b * 2

— A variable is live-in at a node ifitis liveon any| a < 97 edge

o2}

No Yes
N b /AT c
Tive-Ta
n

CS553 Lecture Introduction to Data-flow Analysis 11
Computing Liveness
Rules for computing liveness
(1) Generate liveness: Tive-in,

n use

If a variable is in use[n],
it is live-in at node n

(2) Push 11Yenes§ agrosg edges: live-oull tive-out | live-ou J pred[n]
If a variable is live-in at a node n
e . |
then it is live-out at all nodes in pred[n] o[Tivein

(3) Push liveness across nodes:
If a variable is live-out at node n and not in def[n] live-in
then the variable is also live-in at n

live-out]

Data-flow equations

1) in[n]=use[n]‘ U ’(out[n]—def[n]) 3)

outn]=| U in[s])

s € succ[n]

CS553 Lecture Introduction to Data-flow Analysis 12

Solving the Data-flow Equations

Algorithm

for each node n in CFG
in[n] = @; out[n] =& } initialize solutions
repeat
for each node n in CFG
in’[n] = in[n] } save current results
out’[n] = out[n]
in[n] = use[n] U (out[n]
outln]= U in[s]

s € succ[n]

— def[n]) } solve data-flow equations
until in’[n]=in[n] and out’[n]=out[n] for all n } test for convergence
This is iterative data-flow analysis (for liveness analysis)

CS553 Lecture Introduction to Data-flow Analysis 13

Example

1st 2nd 3rd 4th 5th 6th 7th
n%de use def| in out | in out|in out | in out | in out | in out | in out

1 a a a ac | cac| cac| c ac
2 a b|a a bc |ac be|ac be|ac be|ac be|ac be 2
3 bc ¢ |be bc b [bc b |[bc b [bc b [bc be|be be

4 b a|b b a|b a |b ac|bc ac|bc ac|bc ac 3
5 a a a |a ac|ac ac|ac ac|ac ac|ac ac|ac ac

6

C C C C C C C C

Data-flow Equations for Liveness

in[n] = use[n] U (out[n] — def[n])

outfn]= U in[s]

s € succ[n]

CS553 Lecture Introduction to Data-flow Analysis 14

Example (cont)

Data-flow Equations for Liveness

in[n] = use[n] U (out[n] — def[n]) :
outfn]= U in[s] 2
s € succ[n]

. 3
Improving Performance out[3]—>
Consider the (3—4) edge in the graph: inf4] =,
. : out[4]—>
out[4] is used to compute in[4]
in[4] is used to compute out[3] ...

So we should compute the sets in the
order: out[4], in[4], out[3], in[3],... 6

The order of computation should follow the direction of flow

CS553 Lecture Introduction to Data-flow Analysis

15

Iterating Through the Flow Graph Backwards

1st 2nd 3rd

n(#ie use deffout in |out in |out in
6 ¢ c c c
5 a c ac| ac ac|ac ac
4 b a |[ac bc| ac be|ac bg
3 bc c¢ |bc be| be belbe be
2 a b |bc ac| bc ac|bc ac
1 a |ac c|ac c |ac ¢

Converges much faster!

CS553 Lecture Introduction to Data-flow Analysis

16

Solving the Data-flow Equations (reprise)

Algorithm
for each node n in CFG
in[n] = @; out[n] = } Initialize solutions
repeat

for each node n in CFG in reverse topsort order

in’[n] = in[n] Save current results
out’[n] = out[n]

out[n] = s€ sgc[n] infs] } Solve data-flow equations
in[n] = use[n] U (out[n] — def[n])

until in’[n]=in[n] and out’[n]=out[n] for all n } Test for convergence

CS553 Lecture Introduction to Data-flow Analysis 17

Time Complexity

Consider a program of size N
— Has N nodes in the flow graph and at most N variables
— Each live-in or live-out set has at most N elements
— Each set-union operation takes O(N) time
— The for loop body
— constant # of set operations per node
— O(N) nodes = O(N?) time for the loop
— Each iteration of the repeat loop can only make the set larger
— Each set can contain at most N variables = 2N? iterations

Worst case: O(N%)

Typical case: 2 to 3 iterations with good ordering & sparse sets

= O(N) to O(N2)

CS553 Lecture Introduction to Data-flow Analysis 18

More Performance Considerations

Basic blocks
— Decrease the size of the CFG by merging nodes ! m
that have a single predecessor and a single — v
successor into basic blocks 2b :=a+1
c =¥ +1
3le :=c + b
One variable at a time a >¥9?
— Instead of computing data-flow information

for all variables at once using sets, 5
compute a (simplified) analysis for
each variable separately

Representation of sets
— For dense sets, use a bit vector representation
— For sparse sets, use a sorted list (e.g., linked list)

CS553 Lecture Introduction to Data-flow Analysis 19

Conservative Approximation

X Y Z
n%de use def| in out|in out|in out
1 a | cac | cdacdl c ac
2 a b [ac bc [acdbed| ac b
3 bc ¢ |bc bc |bedbed b b
4 b a [bcac [bedacd b ac
5 a ac ac |acd acd|ac ac
6 ¢ c c c

Solution X

— Our solution as computed on
previous slides

CS553 Lecture Introduction to Data-flow Analysis 20

Conservative Approximation (cont)

X Y Z
n%de use def| in out|in out|in out
1 a cac | cdacdl c ac
2 a b [ac bc [acdbed| ac b
3 bc ¢ |bc bc |bedbed b b
4 b a [bcac [bedacd b ac
5 a ac ac |acd acd|ac ac
6 ¢ c c c

Solution Y

— Carries variable d uselessly around the
loop

— Does Y solve the equations?

— Is d live?

— Does Y lead to a correct program?
Imprecise conservative solutions = sub-optimal but correct programs

CS553 Lecture Introduction to Data-flow Analysis 2

Conservative Approximation (cont)

X Y Z
n%de use def| in out|in out|in out

1 a cac | cdacdl c ac
a b |ac bc |acdbed| ac 4]
bc ¢ |be be |bed bed HI bl
be ac |bed acd| bl ac

a ac ac |acd acd|ac ac

[NV, B SN VA)
o
)

C C C C

Solution Z
— Does not identify c as live in all cases

— Does Z solve the equations?
— Does Z lead to a correct program?

Non-conservative solutions = incorrect programs

b))

CS553 Lecture Introduction to Data-flow Analysis 22

10

The Need for Approximations

Static vs. Dynamic Liveness

— In the following graph, b*b is always non-negative, so ¢ >=b is always
true and a’s value will never be used after node 2

Rule (2) for computing liveness
— Since a is live-in at node 4, it is live-
out at nodes 3 and 2
— This rule ignores actual control flow

return c

No compiler can statically know all a program’s dynamic properties!

Concepts

Liveness
— Use in register allocation
— Generating liveness
— Flow and direction
— Data-flow equations and analysis
— Complexity
— Improving performance (basic blocks, single variable, bit sets)

Control flow graphs
— Predecessors and successors

Defs and uses

Conservative approximation
— Static versus dynamic liveness

11

Next Time

Reading
— Muchnick Ch. 7-7.5

Think about. . .
— Other data-flow analyses

Lecture
— Control-flow analysis
— Basic blocks and control-flow graphs

12

