
1

CS553 Lecture Introduction to Data-flow Analysis 3

Data-flow Analysis

 Idea
– Data-flow analysis derives information about the dynamic

behavior of a program by only examining the static code

 1 a := 0
 2 L1: b := a + 1
 3 c := c + b
 4 a := b * 2
 5 if a < 9 goto L1
 6 return c

Example
– How many registers do we need

for the program on the right?
– Easy bound: the number of

variables used (3)
– Better answer is found by

considering the dynamic
requirements of the program

CS553 Lecture Introduction to Data-flow Analysis 4

Liveness Analysis

 Definition
– A variable is live at a particular point in the program if its value at that

point will be used in the future (dead, otherwise).
∴ To compute liveness at a given point, we need to look into the future

 Motivation: Register Allocation
– A program contains an unbounded number of variables
– Must execute on a machine with a bounded number of registers
– Two variables can use the same register if they are never in use at the

same time (i.e, never simultaneously live).
 ∴ Register allocation uses liveness information

2

CS553 Lecture Introduction to Data-flow Analysis 5

Liveness by Example

 What is the live range of b?
– Variable b is read in statement

4, so b is live on the (3 → 4)
edge

– Since statement 3 does not
assign into b, b is also live on
the (2→3) edge

– Statement 2 assigns b, so any
value of b on the (1→2) and (5→
2) edges are not needed, so b is
dead along these edges

 b’s live range is (2→3→4)
return c

a = 0

b = a + 1

a<9

1

2

6

5

3

4 a = b * 2

c = c + b

YesNo

CS553 Lecture Introduction to Data-flow Analysis 6

Liveness by Example (cont)

 Live range of a
– a is live from (1→2) and again from

(4→5→2)
– a is dead from (2→3→4)

 Live range of b
– b is live from (2→3→4)

 Live range of c
– c is live from

(entry→1→2→3→4→5→2, 5→6)

return c

a = 0

b = a + 1

a<9

1

2

6

5

3

4 a = b * 2

c = c + b

YesNo

 Variables a and b are never simultaneously live, so they can share a register

3

CS553 Lecture Introduction to Data-flow Analysis 7

Control Flow Graphs (CFGs)

 Definition
– A CFG is a graph whose nodes represent program statements and

whose directed edges represent control flow

 Example

 1 a := 0
 2 L1: b := a + 1
 3 c := c + b
 4 a := b * 2
 5 if a < 9 goto L1
 6 return c

return c

a = 0

b = a + 1

a<9

1

2

6

5

3

4 a = b * 2

c = c + b

YesNo

CS553 Lecture Introduction to Data-flow Analysis 8

Terminology

 Flow Graph Terms
– A CFG node has out-edges that lead to successor nodes and in-edges

that come from predecessor nodes
– pred[n] is the set of all predecessors of node n

succ[n] is the set of all successors of node n

 Examples
– Out-edges of node 5:
– succ[5] =
– pred[5] =
– pred[2] =

return c

a = 0

b = a + 1

a<9

1

2

6

5

3

4 a = b * 2

c = c + b
(5→6) and (5→2)

{2,6}

{1,5}
{4}

YesNo

4

CS553 Lecture Introduction to Data-flow Analysis 9

Uses and Defs

 Def (or definition)
– An assignment of a value to a variable
– def[v] = set of CFG nodes that define variable v
– def[n] = set of variables that are defined at node n

 Use
– A read of a variable’s value
– use[v] = set of CFG nodes that use variable v
– use[n] = set of variables that are used at node n

 More precise definition of liveness
– A variable v is live on a CFG edge if

a = 0

a < 9?

∉ def[v]

∈ use[v]

v live

 (1) ∃ a directed path from that edge to a use of v (node in use[v]), and
(2) that path does not go through any def of v (no nodes in def[v])

CS553 Lecture Introduction to Data-flow Analysis 10

a := b * 2

5

c := c + b

The Flow of Liveness

 Data-flow
– Liveness of variables is a property that flows

through the edges of the CFG

 Direction of Flow
– Liveness flows backwards through the CFG,

because the behavior at future nodes
determines liveness at a given node

– Consider a
– Consider b
– Later, we’ll see other properties

that flow forward

a < 9?

b := a + 1

YesNo

3

1 a := 0

4

6 return c

2

5

CS553 Lecture Introduction to Data-flow Analysis 11

Liveness at Nodes
edges

a = 0

 Two More Definitions
– A variable is live-out at a node if it is live on any of that node’s out-

edges

– A variable is live-in at a node if it is live on any of that node’s in-edges

 We have liveness on edges
– How do we talk about

liveness at nodes?
just after computation

just before computation

a := b * 2

5

c := c + b

a < 9?

b := a + 1

YesNo

3

1 a := 0

4

6 return c

2

n
live-out

out-edges

n live-in
in-edges

program points

CS553 Lecture Introduction to Data-flow Analysis 12

 Data-flow equations

 in[n] = use[n] ∪ (out[n] – def[n])

 out[n] = ∪ in[s]
s ∈ succ[n]

(1) (3)

(2)

 Rules for computing liveness
 (1) Generate liveness:

If a variable is in use[n],
it is live-in at node n

n
live-in

use

live-in
n

live-out

 (3) Push liveness across nodes:
If a variable is live-out at node n and not in def[n]

 then the variable is also live-in at n

live-out

n live-in

pred[n]live-out live-out
 (2) Push liveness across edges:

If a variable is live-in at a node n
 then it is live-out at all nodes in pred[n]

Computing Liveness

6

CS553 Lecture Introduction to Data-flow Analysis 13

Solving the Data-flow Equations

 Algorithm

 This is iterative data-flow analysis (for liveness analysis)

for each node n in CFG
in[n] = ∅; out[n] = ∅

repeat
for each node n in CFG

in’[n] = in[n]
out’[n] = out[n]
in[n] = use[n] ∪ (out[n] – def[n])
out[n] = ∪ in[s]

until in’[n]=in[n] and out’[n]=out[n] for all n
s ∈ succ[n]

initialize solutions

solve data-flow equations

test for convergence

save current results

CS553 Lecture Introduction to Data-flow Analysis 14

 3 bc c

 5 a

 2 a b
 1 a

node
use def in out in out in out in out in out in out in out

 4 b a

 6 c

1st 2nd 3rd 4th 5th 6th 7th

c

a

b
a a

bc

a

c

a bc
bc b
b a
a ac

a

c

ac bc
bc b

b a
ac ac

ac

c

ac bc
bc b
b ac

ac ac

c ac

c

ac bc
bc b
bc ac

ac ac

c ac

c

ac bc
bc bc
bc ac

ac ac

c ac

c

ac bc
bc bc
bc ac

ac ac

Data-flow Equations for Liveness

in[n] = use[n] ∪ (out[n] – def[n])

out[n] = ∪ in[s]
s ∈ succ[n]

YesNo

2 b := a + 1

3 c := c + b

1 a := 0

4 a := b * 2

5 a < 9?

6 return c

Example

7

CS553 Lecture Introduction to Data-flow Analysis 15

Improving Performance
Consider the (3→4) edge in the graph:
out[4] is used to compute in[4]
in[4] is used to compute out[3] . . .
So we should compute the sets in the
order: out[4], in[4], out[3], in[3], . . .

Data-flow Equations for Liveness

in[n] = use[n] ∪ (out[n] – def[n])

out[n] = ∪ in[s]
s ∈ succ[n]

The order of computation should follow the direction of flow

out[4]
in[4]

out[3]

YesNo

2 b := a + 1

3 c := c + b

1 a := 0

4 a := b * 2

5 a < 9?

6 return c

Example (cont)

CS553 Lecture Introduction to Data-flow Analysis 16

 4 b a ac bc ac bc ac bc

 2 a b bc ac bc ac bc ac

 5 a c ac ac ac ac ac

 1 a ac c ac c ac c

 6 c c c c

node# use def out in out in out in

 3 bc c bc bc bc bc bc bc

1st 2nd 3rd

Converges much faster!
YesNo

2 b := a + 1

3 c := c + b

1 a := 0

4 a := b * 2

5 a < 9?

6 return c

Iterating Through the Flow Graph Backwards

8

CS553 Lecture Introduction to Data-flow Analysis 17

Solving the Data-flow Equations (reprise)

 Algorithm

for each node n in CFG
in[n] = ∅; out[n] = ∅

repeat
for each node n in CFG in reverse topsort order

in’[n] = in[n]
out’[n] = out[n]
out[n] = ∪ in[s]
in[n] = use[n] ∪ (out[n] – def[n])

until in’[n]=in[n] and out’[n]=out[n] for all n

s ∈ succ[n]

Initialize solutions

Solve data-flow equations

Test for convergence

Save current results

CS553 Lecture Introduction to Data-flow Analysis 18

Time Complexity

 Consider a program of size N
– Has N nodes in the flow graph and at most N variables
– Each live-in or live-out set has at most N elements
– Each set-union operation takes O(N) time
– The for loop body

– constant # of set operations per node
– O(N) nodes ⇒ O(N2) time for the loop

– Each iteration of the repeat loop can only make the set larger
– Each set can contain at most N variables ⇒ 2N2 iterations

 Worst case: O(N4)
 Typical case: 2 to 3 iterations with good ordering & sparse sets
 ⇒ O(N) to O(N2)

9

CS553 Lecture Introduction to Data-flow Analysis 19

More Performance Considerations

 Basic blocks
– Decrease the size of the CFG by merging nodes

that have a single predecessor and a single
successor into basic blocks

 One variable at a time
– Instead of computing data-flow information

for all variables at once using sets,
compute a (simplified) analysis for
each variable separately

 Representation of sets
– For dense sets, use a bit vector representation
– For sparse sets, use a sorted list (e.g., linked list)

No

1 a := 0

3 return c

2 b := a + 1
c := c + 1
a := b * 2
 a > 9?

Yes

2

3

YesNo

b := a + 1

c := c + b

4 a := b * 2

5 a < 9?

6 return c

1 a := 0

CS553 Lecture Introduction to Data-flow Analysis 20

 3 bc c bc bc bcd bcd b b

 5 a ac ac acd acd ac ac

 2 a b ac bc acd bcd ac b

 6 c c c c

 1 a c ac cd acd c ac

node
use def in out in out in out

 4 b a bc ac bcd acd b ac

 X Y Z

YesNo

2 b := a + 1

3 c := c + b

1 a := 0

4 a := b * 2

5 a < 9?

6 return c

Conservative Approximation

 Solution X
– Our solution as computed on

previous slides

10

CS553 Lecture Introduction to Data-flow Analysis 21

 3 bc c bc bc bcd bcd b b

 5 a ac ac acd acd ac ac

 2 a b ac bc acd bcd ac b

 6 c c c c

 1 a c ac cd acd c ac

node
use def in out in out in out

 4 b a bc ac bcd acd b ac

 X Y Z

Imprecise conservative solutions ⇒ sub-optimal but correct programs

YesNo

2 b := a + 1

3

1 a := 0

4 a := b * 2

5 a < 9?

6 return c

Conservative Approximation (cont)

 Solution Y
– Carries variable d uselessly around the

loop
– Does Y solve the equations?
– Is d live?
– Does Y lead to a correct program?

c := c + b

CS553 Lecture Introduction to Data-flow Analysis 22

 3 bc c bc bc bcd bcd b b

 5 a ac ac acd acd ac ac

 2 a b ac bc acd bcd ac b

 6 c c c c

 1 a c ac cd acd c ac

node
use def in out in out in out

 4 b a bc ac bcd acd b ac

 X Y Z

Non-conservative solutions ⇒ incorrect programs

YesNo

1 a := 0

4 a := b * 2

5 a < 9?

6 return c

Conservative Approximation (cont)

 Solution Z
– Does not identify c as live in all cases
– Does Z solve the equations?
– Does Z lead to a correct program?

c := c + b

b := a + 12

3

11

CS553 Lecture Introduction to Data-flow Analysis 23

No compiler can statically know all a program’s dynamic properties!

The Need for Approximations

 Static vs. Dynamic Liveness
– In the following graph, b*b is always non-negative, so c >= b is always

true and a’s value will never be used after node 2

YesNo

2 c := a + b

3 c >= b?

1 a := b * b

4 return a 5 return c

 Rule (2) for computing liveness
– Since a is live-in at node 4, it is live-

out at nodes 3 and 2
– This rule ignores actual control flow

CS553 Lecture Introduction to Data-flow Analysis 24

Concepts

 Liveness
– Use in register allocation
– Generating liveness
– Flow and direction
– Data-flow equations and analysis
– Complexity
– Improving performance (basic blocks, single variable, bit sets)

 Control flow graphs
– Predecessors and successors

 Defs and uses

 Conservative approximation
– Static versus dynamic liveness

12

CS553 Lecture Introduction to Data-flow Analysis 25

Next Time

 Reading
– Muchnick Ch. 7-7.5

 Think about. . .
– Other data-flow analyses

 Lecture
– Control-flow analysis
– Basic blocks and control-flow graphs

