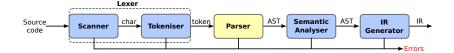
Compiling Techniques

Lecture 5: Top-Down Parsing

Christophe Dubach

25 September 2018

The Parser



- Checks the stream of words/tokens produced by the lexer for grammatical correctness
- Determine if the input is syntactically well formed
- Guides checking at deeper levels than syntax
- Used to build an IR representation of the code

Table of contents

- Context-Free Grammar (CFG)
 - Definition
 - RE to CFG
- Recursive-Descent Parsing
 - Main idea
 - Writing a Parser
 - Left Recursion
- 3 LL(K) grammars
 - Need for lookahead
 - LL(1) property
 - LL(K)

Specifying syntax with a grammar

Use Context-Free Grammar (CFG) to specify syntax

Contex-Free Grammar definition

A Context-Free Grammar G is a quadruple (S, N, T, P) where:

- S is a start symbol
- N is a set of non-terminal symbols
- T is a set of terminal symbols or words
- P is a set of production or rewrite rules where only a single non-terminal is allowed on the left-hand side

$$P: N \to (N \cup T)^*$$

From Regular Expression to Context-Free Grammar

- Kleene closure A^* : replace A^* to A_{rep} in all production rules and add $A_{rep} = A A_{rep} \mid \epsilon$ as a new production rule
- Positive closure A^+ : replace A^+ to A_{rep} in all production rules and add $A_{rep} = A |A_{rep}| A$ as a new production rule
- Option [A]: replace [A] to A_{opt} in all production rules and add $A_{opt} = A \mid \epsilon$ as a new production rule

Example: function call

```
 funcall ::= IDENT "(" [ IDENT ("," IDENT)* ] ")"
```

after removing the option:

```
funcall ::= IDENT "(" arglist ")" arglist ::= IDENT ("," IDENT)* \mid \epsilon
```

after removing the closure:

```
\begin{array}{lll} \text{funcall} & ::= & \text{IDENT "(" arglist ")"} \\ & \text{arglist} & ::= & \text{IDENT argrep} \\ & & | & \epsilon \\ & & \text{argrep} & ::= & ", " & \text{IDENT argrep} \\ & & | & \epsilon \end{array}
```

Steps to derive a syntactic analyser for a context free grammar expressed in an EBNF style:

- convert all the regular expressions as seen;
- Implement a function for each non-terminal symbol A.
 This function recognises sentences derived from A;
- Recursion in the grammar corresponds to recursive calls of the created functions.

This technique is called recursive-descent parsing or predictive parsing.

Parser class (pseudo-code)

```
Token currentToken;
void error(TokenClass... expected) {/* ... */}
boolean accept (TokenClass . . . expected) {
  return (currentToken ∈ expected);
Token expect(TokenClass... expected) {
  Token token = currentToken;
  if (accept(expected)) {
     nextToken(); // modifies currentToken
     return token;
  else
    error(expected); }
```

CFG for function call

```
\begin{array}{lll} \text{funcall} ::= & \text{IDENT } " (" & \text{arglist } ")" \\ & \text{arglist} ::= & \text{IDENT argrep} \\ & & | & \epsilon \\ & \text{argrep} & ::= & ", " & \text{IDENT argrep} \\ & & | & \epsilon \end{array}
```

Recursive-Descent Parser

```
void parseFunCall() {
  expect (IDENT);
  expect (LPAR);
  parseArgList();
  expect (RPAR);
void parseArgList() {
  if (accept(IDENT)) {
    nextToken();
    parseArgRep();
void parseArgRep() {
  if (accept(COMMA)) {
    nextToken();
    expect (IDENT);
    parseArgRep();
```

Be aware of infinite recursion!

Left Recursion

The parser would recurse indefinitely!

Luckily, we can transform this grammar to:

$$\mathsf{E} \ ::= \ \mathsf{T} \ ("+" \ \mathsf{T})^*$$

Removing Left Recursion

You can use the following rule to remove left recursion:

$$A \to A\alpha_1 |A\alpha_2| \dots |A\alpha_m|\beta_1 |\beta_2| \dots |\beta_n|$$
 where $first(\beta_i) \cap first(A) = \emptyset$ and $\varepsilon \notin first(\alpha_i)$

can be rewritten into:

$$A \to \beta_1 A' | \beta_2 A' | \dots | \beta_n A'$$

 $A' \to \alpha_1 A' | \alpha_2 A' | \dots | \alpha_m A' | \varepsilon$

Hint:

Use this to deal with arrayaccess and fieldaccess for the coursework

Consider the following bit of grammar

```
stmt ::= assign ";"
       | funcall ";"
funcall ::= IDENT "(" arglist ")"
assign ::= IDENT "=" exp
```

```
void parseAssign() {
  expect (IDENT);
                                  void parseFunCall() {
  expect (EQ);
                                    expect (IDENT);
  parseExp();
                                    expect (LPAR);
                                    parseArgList();
                                    expect (RPAR):
void parseStmt() {
  ???
```

If the parser picks the wrong production, it may have to backtrack. Alternative is to look ahead to pick the correct production.

How much lookahead is needed?

In general, an arbitrarily large amount

Fortunately:

- Large subclasses of CFGs can be parsed with limited lookahead
- Most programming language constructs fall in those subclasses

Among the interesting subclasses are LL(1) grammars.

LL(1)

Left-to-Right parsing;

Leftmost derivation; (i.e. apply production for leftmost non-terminal first) only 1 current symbol required for making a decision.

Basic idea: given $A \to \alpha | \beta$, the parser should be able to choose between α and β .

First sets

For some symbol $\alpha \in N \cup T$, define First(α) as the set of symbols that appear first in some string that derives from α :

$$x \in First(\alpha)$$
 iif $\alpha \to \cdots \to x\gamma$, for some γ

The LL(1) property: if $A \to \alpha$ and $A \to \beta$ both appear in the grammar, we would like:

$$First(\alpha) \cap First(\beta) = \emptyset$$

This would allow the parser to make the correct choice with a lookahead of exactly one symbol! (almost, see next slide!)

What about ϵ -productions (the ones that consume no symbols)?

If $A \to \alpha$ and $A \to \beta$ and $\epsilon \in First(\alpha)$, then we need to ensure that $First(\beta)$ is disjoint from $Follow(\alpha)$.

 $Follow(\alpha)$ is the set of all terminal symbols in the grammar that can legally appear immediately after α .

(See EaC§3.3 for details on how to build the First and Follow sets.)

Let's define $First^+(\alpha)$ as:

- $First(\alpha) \cup Follow(\alpha)$, if $\epsilon \in First(\alpha)$
- $First(\alpha)$ otherwise

LL(1) grammar

A grammar is LL(1) iff $A \rightarrow \alpha$ and $B \rightarrow \beta$ implies:

$$First^+(\alpha) \cap First^+(\beta) = \emptyset$$

Given a grammar that has the LL(1) property:

- each non-terminal symbols appearing on the left hand side is recognised by a simple routine;
- the code is both simple and fast.

Predictive Parsing

Grammar with the LL(1) property are called *predictive grammars* because the parser can "predict" the correct expansion at each point. Parsers that capitalise on the LL(1) property are called *predictive parsers*. One kind of predictive parser is the *recursive descent* parser.

Sometimes, we might need to lookahead one or more tokens.

LL(2) Grammar Example

```
void parseStmt() {
  if (accept(IDENT)) {
    if (lookAhead(1) == LPAR)
      parseFunCall();
  else if (lookAhead(1) == EQ)
      parseAssign();
  else
      error();
}
else
  error();
}
```

Next lecture

- More about LL(1) & LL(k) languages and grammars
- Dealing with ambiguity
- Left-factoring
- Bottom-up parsing