Compiling Techniques
Lecture 5: Top-Down Parsing

Christophe Dubach

25 September 2018

Christophe Dubach

The Parser

Lexer

Source -]char [B . token(Py] AST f S ic] AST f IR IR
code _’(: J l : l l J l Anallyser J l Genelrator]—>
L 1

Errors

@ Checks the stream of words/tokens produced by the lexer for
grammatical correctness

@ Determine if the input is syntactically well formed
@ Guides checking at deeper levels than syntax

@ Used to build an IR representation of the code

Christophe Dubach

Table of contents

@ Context-Free Grammar (CFG)
@ Definition
@ RE to CFG

@ Recursive-Descent Parsing
@ Main idea
@ Writing a Parser
@ Left Recursion

© LL(K) grammars
@ Need for lookahead
@ LL(1) property
o LL(K)

Christophe Dubach

RE to CFG

Specifying syntax with a grammar

@ Use Context-Free Grammar (CFG) to specify syntax

Contex-Free Grammar definition

A Context-Free Grammar G is a quadruple (S, N, T, P) where:
@ S is a start symbol
@ N is a set of non-terminal symbols
@ T is a set of terminal symbols or words
°

P is a set of production or rewrite rules where only a single
non-terminal is allowed on the left-hand side
P:N— (NUT)*

Christophe Dubach

Definition

From Regular Expression to Context-Free Grammar

o Kleene closure A*:
replace A* to Aep in all production rules and add
Arep = A Arep | € as a new production rule

@ Positive closure AT:
replace AT to A, in all production rules and add
Arep = A Arep| A as a new production rule

e Option [A]:

replace [A] to Agp in all production rules and add
Aopt = A | € as a new production rule

Christophe Dubach

Example: function call

funcall ::= IDENT " (" [IDENT (".,” IDENT)*] ")"

v

after removing the option:

funcall ::= IDENT " (" arglist ")"
arglist ::= IDENT (" ,” IDENT)"*
| €

after removing the closure:

funcall ::= IDENT " (" arglist ")"
arglist IDENT argrep

€

".," IDENT argrep
€

argrep

<

Christophe Dubach

Writing a Parser
Left Recursion

Steps to derive a syntactic analyser for a context free grammar
expressed in an EBNF style:
@ convert all the regular expressions as seen;

@ Implement a function for each non-terminal symbol A.
This function recognises sentences derived from A;

@ Recursion in the grammar corresponds to recursive calls of the
created functions.

This technique is called recursive-descent parsing or predictive
parsing.

Christophe Dubach

Main idea

Left Recursion

Parser class (pseudo-code)

Token currentToken;
void error(TokenClass... expected) {/x ... x/}

boolean accept(TokenClass... expected) {
return (currentToken € expected);

}

Token expect(TokenClass... expected) {

Token token = currentToken;

if (accept(expected)) {
nextToken (); // modifies currentToken
return token;

}

else
error (expected); }

Christophe Dubach

Main idea
Left Recursion

Recursive-Descent Parser

void parseFunCall() {
expect (IDENT);
expect (LPAR);
parseArglist ();

CFG for function call } expect (RPAR);

funcall::= IDENT " (" arglist ")"l void parseArglList() {

arglist::= IDENT argrep if (accept(IDENT)) {
| € nextToken ();

argrep ::= ",” IDENT argrep parseArgRep (); }
| }

void parseArgRep () {
if (accept(COMMA)) {
nextToken ();
expect (IDENT);
parseArgRep (); }

Christophe Dubach

Main idea
Writing a Parser

Be aware of infinite recursion!

Left Recursion

E :: +" T

E "
T

The parser would recurse indefinitely!

Luckily, we can transform this grammar to:
E =T ((+" T)*

Christophe Dubach

Main idea
Writing a Parser

Removing Left Recursion

You can use the following rule to remove left recursion:

A = Aaz|Aag|. .. |Aam|B1]B2] - - - | B where
first(B;) N first(A) = & and ¢ ¢ first(«;)

can be rewritten into:
A— ﬁlA/’ﬁzA/’ . ’,8”/4/

A = aAlaA .. lamAle

Hint:
Use this to deal with arrayaccess and fieldaccess for the courseworkJ

Christophe Dubach

LL(1) property
LL(K)

Consider the following bit of grammar

no.n

stmt = assign :

| funcall ";”
funcall ::= IDENT " (" arglist ")”
assign = IDENT "=" exp

void parseAssign() {
zipzztg:gDQE)l\.lT); void parseFunCall() {
arseExp (). expect (IDENT);
} P PR expect (LPAR);
parseArglList ();

void parseStmt() { expect (RPAR);

777 J
}

If the parser picks the wrong production, it may have to backtrack.
Alternative is to look ahead to pick the correct production. J

Christophe Dubach

Need for lookahead
LL(K)

How much lookahead is needed?
@ In general, an arbitrarily large amount
Fortunately:
@ Large subclasses of CFGs can be parsed with limited lookahead

@ Most programming language constructs fall in those subclasses

Among the interesting subclasses are LL(1) grammars.

Left-to-Right parsing;
Leftmost derivation; (i.e. apply production for leftmost non-terminal first)
only 1 current symbol required for making a decision.

Christophe Dubach

Need for lookahead
LL(K)

Basic idea: given A — «/f3, the parser should be able to choose
between « and S.

For some symbol o« € N U T, define First(a) as the set of symbols
that appear first in some string that derives from «:

x € First(a) iif @ — - -+ — x7, for some ~

The LL(1) property: if A— « and A — (3 both appear in the
grammar, we would like:

First(a) N First(8) = 0

This would allow the parser to make the correct choice with a
lookahead of exactly one symbol! (almost, see next slide!)

Christophe Dubach

Need for lookahead
LL(K)

What about e-productions (the ones that consume no symbols)?

If A— « and A — (3 and € € First(a), then we need to ensure
that First(3) is disjoint from Follow(«).

Follow () is the set of all terminal symbols in the grammar that
can legally appear immediately after «.
(See EaC§3.3 for details on how to build the First and Follow sets.)

Let's define First*(«) as:
e First(a) U Follow(), if € € First(cx)
o First(a) otherwise

LL(1) grammar

A grammar is LL(1) iff A— « and B — (3 implies:
First™(a) N First™(8) = 0

Need for lookahead
LL(K)

Given a grammar that has the LL(1) property:

@ each non-terminal symbols appearing on the left hand side is
recognised by a simple routine;

@ the code is both simple and fast.

Predictive Parsing

Grammar with the LL(1) property are called predictive grammars
because the parser can “predict” the correct expansion at each
point. Parsers that capitalise on the LL(1) property are called
predictive parsers. One kind of predictive parser is the recursive
descent parser.

Christophe Dubach

Need for lookahead
LL(1) property

Sometimes, we might need to lookahead one or more tokens.

LL(2) Grammar Example

no.n

stmt = assign ";

| funcall ;"
funcall ::= IDENT " (" arglist ")"
assign ::= IDENT "=" exp

void parseStmt() {

if (accept(IDENT)) {
if (lookAhead (1) = LPAR)
parseFunCall ();
else if (lookAhead (1) EQ)
parseAssign ();

else

error ();
}

else
error ();

Christophe Dubach

Need for lookahead
LL(1) property

Next lecture

More about LL(1) & LL(k) languages and grammars
Dealing with ambiguity
Left-factoring

Bottom-up parsing

Christophe Dubach

	Context-Free Grammar (CFG)
	Definition
	RE to CFG

	Recursive-Descent Parsing
	Main idea
	Writing a Parser
	Left Recursion

	LL(K) grammars
	Need for lookahead
	LL(1) property
	LL(K)

