
Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Compiling Techniques
Lecture 4: Automatic Lexer Generation

(EaC§2.4)

Christophe Dubach

25 September 2018

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Reminder

Action

Give us permission to access your gitlab repository.

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Table of contents

1 Finite State Automata for Regular Expression
Finite State Automata
Non-determinism

2 From Regular Expression to Generated Lexer
Regular Expression to NFA
From NFA to DFA

3 Final Remarks

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Automatic Lexer Generation

Scanner
Source
code

Tokeniser
tokenchar

Parser
AST Semantic

Analyser
AST

Lexer

IR
Generator

IR

Errors

Starting from a collection of regular expressions (RE) we
automatically generate a Lexer.

We use finite state automata (FSA) for the construction

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Finite State Automata
Non-determinism

Definition: finite state automata

A finite state automata is defined by:

S , a finite set of states

Σ, an alphabet, or character set used by the recogniser

δ(s, c), a transition function (takes a state and a character
and returns new state)

s0, the initial or start state

SF , a set of final states (a stream of characters is accepted iif
the automata ends up in a final state)

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Finite State Automata
Non-determinism

Finite State Automata for Regular Expression

Example: register names

r e g i s t e r : := ’ r ’ (’ 0 ’ | ’ 1 ’ | . . . | ’ 9 ’) (’ 0 ’ | ’ 1 ’ | . . . | ’ 9 ’) ∗

The RE (Regular Expression) corresponds to a recogniser
(or finite state automata):

s0 s1 s2
’r’

’0’|’1’|...|’9’

’0’|’1’|...|’9’

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Finite State Automata
Non-determinism

s0 s1 s2
’r’

’0’|’1’|...|’9’

’0’|’1’|...|’9’

Finite State Automata (FSA) operation:

Start in state s0 and take transitions on each input character

The FSA accepts a word x iff x leaves it in a final state (s2)

Examples:

r17 takes it through s0, s1, s2 and accepts

r takes it through s0, s1 and fails

a starts in s0 and leads straight to failure

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Finite State Automata
Non-determinism

Table encoding and skeleton code

To be useful a recogniser must be turned into code

s0 s1 s2
’r’

’0’|’1’|...|’9’

’0’|’1’|...|’9’

Table encoding RE

δ ’r’ ’ 0 ’ | ’ 1 ’ | . . . | ’ 9 ’ others

s0 s1 error error

s1 error s2 error

s2 error s2 error

Skeleton recogniser

c = n e x t c h a r a c t e r
s t a t e = s0
w h i l e (c 6= EOF)

s t a t e = δ(state, c)
c = n e x t c h a r a c t e r

i f (s t a t e f i n a l)
r e t u r n s u c c e s s

e l s e
r e t u r n e r r o r

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Finite State Automata
Non-determinism

Deterministic Finite Automaton

Each RE corresponds to a Deterministic Finite Automaton (DFA).
However, it might be hard to construct directly.

What about an RE such as (a|b)∗abb ?

s0 s1 s2 s3 s4
ε

a|b

a b b

This is a little different:

s0 has a transition on ε, which can be followed without
consuming an input character

s1 has two transitions on a

This is a Non-determinisitic Finite Automaton (NFA)

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Finite State Automata
Non-determinism

Non-deterministic vs deterministic finite automata

Deterministic finite state automata (DFA):

All edges leaving the same node have distinct labels

There is no ε transition

Non-deterministic finite state automata (NFA):

Can have multiple edges with the same label leaving from the
same node

Can have ε transition

This means we might have to backtrack

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Regular Expression to NFA
From NFA to DFA

Automatic Lexer Generation

It is possible to systematically generate a lexer for any regular
expression.
This can be done in three steps:

1 regular expression (RE) → non-deterministic finite automata
(NFA)

2 NFA → deterministic finite automata (DFA)

3 DFA → generated lexer

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Regular Expression to NFA
From NFA to DFA

1st step: RE → NFA (Ken Thompson, CACM, 1968)

“x ′′ s0 s1
x

[M] s0 s1
M

ε

M|N s0

s1 s2

s3 s4

s5

ε

M

ε

ε

N

ε

M N

s0 s1 s2 s3
M ε N

M∗

s0 s1 s2 s3
ε

ε

M ε

ε

M+

s0 s1 s2 s3
ε M ε

ε

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Regular Expression to NFA
From NFA to DFA

Example: a(b|c)∗

s0 s1 s2 s3

s4 s5

s6 s7

s8 s9
a ε ε

ε

ε

ε

b

ε

c

ε

ε

ε

A human would do: s0 s1
a

b|c

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Regular Expression to NFA
From NFA to DFA

Step 2: NFA → DFA

Executing a non-deterministic finite automata requires
backtracking, which is inefficient. To overcome this, we need to
construct a DFA from the NFA.
The main idea:

We build a DFA which has one state for each set of states the
NFA could end up in.

A set of state is final in the DFA if it contains the final state
from the NFA.

Since the number of states in the NFA is finite (n), the
number of possible sets of states is also finite (maximum 2n,
hint: state encoded as binary vectors).

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Regular Expression to NFA
From NFA to DFA

Assuming the state of the NFA are labelled si and the states of the
DFA we are building are labelled qi .
We have two key functions:

reachable(si , α) returns the set of states reachable from si by
consuming character α

ε-closure(si) returns the set of states reachable from si by ε
(e.g. without consuming a character)

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Regular Expression to NFA
From NFA to DFA

The Subset Construction algorithm (Fixed point iteration)

q0 = ε-closure(s0) ; Q = {q0} ; add q0 to WorkList
w h i l e (WorkList not empty)

remove q from WorkList
f o r each α ∈ Σ

subset = ε-closure(reachable(q, α))
δ(q, α) = subset
i f (subset /∈ Q) then

add subset to Q and to WorkList

The algorithm (in English)

Start from start state s0 of the NFA, compute its ε-closure

Build subset from all states reachable from q0 for character α

Add this subset to the transition table/function δ

If the subset has not been seen before, add it to the worklist

Iterate until no new subset are created

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Regular Expression to NFA
From NFA to DFA

Informal proof of termination

Q contains no duplicates (test before adding)

similarly we will never add twice the same subset to the
worklist

bounded number of states; maximum 2n subsets, where n is
number of state in NFA

⇒ the loop halts

End result

S contains all the reachable NFA states

It tries each symbol in each si

It builds every possible NFA configuration

⇒ Q and δ form the DFA

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Regular Expression to NFA
From NFA to DFA

NFA → DFA

a(b|c)∗

s0 s1 s2 s3

s4 s5

s6 s7

s8 s9
a ε ε

ε

ε

ε

b ε

c

ε

ε

ε

ε-closure(reachable(q, α))

NFA states a b c

q0 s0 q1 none none

q1 s1, s2, s3,
s4, s6, s9

none q2 q3

q2 s5, s8, s9,
s3, s4, s6

none q2 q3

q3 s7, s8, s9,
s3, s4, s6

none q2 q3

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Regular Expression to NFA
From NFA to DFA

Resulting DFA for a(b|c)∗

Graph

q0 q1

q2

q3

a

b

c

b

c

c

b

Table encoding

a b c

q0 q1 error error

q1 error q2 q3
q2 error q2 q3
q3 error q2 q3

Smaller than the NFA

All transitions are deterministic (no need to backtrack!)

Could be even smaller
(see EaC§2.4.4 Hopcroft’s Algorithm for minimal DFA)

Can generate the lexer using skeleton recogniser seen earlier

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

What can be so hard?

Poor language design can complicate lexing

PL/I does not have reserved words (keywords):
if (cond) then then = else ; else else = then

In Fortran & Algol68 blanks (whitespaces) are insignificant:
do 10 i = 1,25 ∼= do 10 i = 1,25 (loop, 10 is statement label)
do 10 i = 1.25 ∼= do10i = 1.25 (assignment)

In C,C++,Java string constants can have special characters:
newline, tab, quote, comment delimiters, . . .

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Building Lexer

The important point:

All this technology lets us automate lexer construction

Implementer writes down regular expressions

Lexer generator builds NFA, DFA and then writes out code

This reliable process produces fast and robust lexers

For most modern language features, this works:

As a language designer you should think twice before
introducing a feature that defeats a DFA-based lexer

The ones we have seen (e.g. insignificant blanks, non-reserved
keywords) have not proven particularly useful or long lasting

Christophe Dubach Compiling Techniques

Finite State Automata for Regular Expression
From Regular Expression to Generated Lexer

Final Remarks

Next lecture

Parsing:

Context-Free Grammars

Dealing with ambiguity

Recursive descent parser

Christophe Dubach Compiling Techniques

	Finite State Automata for Regular Expression
	Finite State Automata
	Non-determinism

	From Regular Expression to Generated Lexer
	Regular Expression to NFA
	From NFA to DFA

	Final Remarks

