Compiling Techniques Lecture 4: Automatic Lexer Generation (EaC§2.4)

Christophe Dubach

25 September 2018

Reminder

Action

Give us permission to access your gitlab repository.

Table of contents

- Finite State Automata for Regular Expression
 - Finite State Automata
 - Non-determinism
- Prom Regular Expression to Generated Lexer
 - Regular Expression to NFA
 - From NFA to DFA

3 Final Remarks

Automatic Lexer Generation

- Starting from a collection of regular expressions (RE) we automatically generate a Lexer.
- We use finite state automata (FSA) for the construction

Definition: finite state automata

A finite state automata is defined by:

- S, a finite set of states
- $\bullet~\Sigma,$ an alphabet, or character set used by the recogniser
- δ(s, c), a transition function (takes a state and a character and returns new state)
- s₀, the initial or start state
- S_F , a set of final states (a stream of characters is accepted iif the automata ends up in a final state)

Finite State Automata Non-determinism

Finite State Automata for Regular Expression

Example: register names

```
register ::= 'r' ('0'|'1'|...|'9') ('0'|'1'|...|'9')*
```

The RE (Regular Expression) corresponds to a recogniser (or finite state automata):

Finite State Automata Non-determinism

Finite State Automata (FSA) operation:

• Start in state s₀ and take transitions on each input character

• The FSA accepts a word **x** iff **x** leaves it in a final state (*s*₂) Examples:

- **r17** takes it through s_0, s_1, s_2 and accepts
- **r** takes it through s_0, s_1 and fails
- a starts in s₀ and leads straight to failure

Finite State Automata Non-determinism

Table encoding and skeleton code

To be useful a recogniser must be turned into code

Table encoding RE

δ	'r'	'0 ' '1 ' '9 '	others
<i>s</i> 0	<i>s</i> ₁	error	error
<i>s</i> ₁	error	<i>s</i> ₂	error
<i>s</i> ₂	error	<i>s</i> ₂	error

Skeleton recogniser

```
c = next character

state = s_0

while (c \neq EOF)

state = \delta(state, c)

c = next character

if (state final)

return success

else

return error
```

Finite State Automata Non-determinism

Deterministic Finite Automaton

Each RE corresponds to a Deterministic Finite Automaton (DFA). However, it might be hard to construct directly.

What about an RE such as $(a|b)^*abb$?

This is a little different:

- s_0 has a transition on ϵ , which can be followed without consuming an input character
- s₁ has two transitions on a
- This is a Non-determinisitic Finite Automaton (NFA)

Non-deterministic vs deterministic finite automata

Deterministic finite state automata (DFA):

- All edges leaving the same node have distinct labels
- There is no ϵ transition

Non-deterministic finite state automata (NFA):

- Can have multiple edges with the same label leaving from the same node
- Can have ϵ transition
- This means we might have to backtrack

Regular Expression to NFA From NFA to DFA

Automatic Lexer Generation

It is possible to systematically generate a lexer for any regular expression.

This can be done in three steps:

- regular expression (RE) \rightarrow non-deterministic finite automata (NFA)
- **2** NFA \rightarrow deterministic finite automata (DFA)
- $\textbf{3} \ \mathsf{DFA} \to \mathsf{generated} \ \mathsf{lexer}$

Regular Expression to NFA From NFA to DFA

1st step: $RE \rightarrow NFA$ (Ken Thompson, CACM, 1968)

ΜN

 $(s_0 \xrightarrow{\mathsf{M}} (s_1 \xrightarrow{\epsilon} (s_2 \xrightarrow{\mathsf{N}} (s_3)$

 M^*

Regular Expression to NFA From NFA to DFA

Example: $a(b|c)^*$

Regular Expression to NFA From NFA to DFA

Step 2: NFA \rightarrow DFA

Executing a non-deterministic finite automata requires backtracking, which is inefficient. To overcome this, we need to construct a DFA from the NFA.

The main idea:

- We build a DFA which has one state for each set of states the NFA could end up in.
- A set of state is final in the DFA if it contains the final state from the NFA.
- Since the number of states in the NFA is finite (*n*), the number of possible sets of states is also finite (maximum 2^{*n*}, hint: state encoded as binary vectors).

Assuming the state of the NFA are labelled s_i and the states of the DFA we are building are labelled q_i .

We have two key functions:

- reachable(s_i , α) returns the set of states reachable from s_i by consuming character α
- *ϵ*-closure(s_i) returns the set of states reachable from s_i by ϵ
 (*e.g.* without consuming a character)

Regular Expression to NFA From NFA to DFA

The Subset Construction algorithm (Fixed point iteration)

```
\begin{array}{l} q_0 = \epsilon\text{-closure}(s_0); \ Q = \{q_0\}; \ \text{add} \ q_0 \ \text{to} \ \text{WorkList} \\ \text{while} \ (\text{WorkList} \ \text{not} \ \text{empty}) \\ \text{remove} \ q \ \text{from} \ \text{WorkList} \\ \text{for} \ \text{each} \ \alpha \in \Sigma \\ subset = \epsilon\text{-closure}(reachable(q, \alpha)) \\ \delta(q, \alpha) = subset \\ \text{if} \ (subset \notin Q) \ \text{then} \\ \text{add} \ subset} \ \text{to} \ Q \ \text{and} \ \text{to} \ \text{WorkList} \end{array}
```

The algorithm (in English)

- Start from start state s_0 of the NFA, compute its ϵ -closure
- Build subset from all states reachable from q_0 for character lpha
- Add this subset to the transition table/function δ
- If the subset has not been seen before, add it to the worklist
- Iterate until no new subset are created

Regular Expression to NFA From NFA to DFA

Informal proof of termination

- Q contains no duplicates (test before adding)
- similarly we will never add twice the same subset to the worklist
- bounded number of states; maximum 2ⁿ subsets, where n is number of state in NFA
- \Rightarrow the loop halts

End result

- S contains all the reachable NFA states
- It tries each symbol in each s_i
- It builds every possible NFA configuration
- \Rightarrow **Q** and δ form the DFA

Regular Expression to NFA From NFA to DFA

$\mathsf{NFA}\to\mathsf{DFA}$

a(b c)*	$(s_0 \xrightarrow{e} (s_1 \xrightarrow{e} (s_2 \xrightarrow{e} (s_3 \xrightarrow{e} (s_4 \xrightarrow{b} (s_5 \xrightarrow{e} (s_6 \xrightarrow{e} (s_6$						
			ϵ -closure(reachable(q, α))				
		NFA states	а	b	С		
	q_0	<i>s</i> ₀	q_1	none	none		
	q_1	$s_1, s_2, s_3,$	none	q ₂	<i>q</i> ₃		
		s_4, s_6, s_9					
	q_2	<i>s</i> ₅ , <i>s</i> ₈ , <i>s</i> ₉ ,	none	<i>q</i> ₂	<i>q</i> ₃		
		<i>s</i> ₃ , <i>s</i> ₄ , <i>s</i> ₆					
	q_3	<i>s</i> ₇ , <i>s</i> ₈ , <i>s</i> ₉ ,	none	q ₂	<i>q</i> ₃		
		<i>s</i> ₃ , <i>s</i> ₄ , <i>s</i> ₆					

Regular Expression to NFA From NFA to DFA

Resulting DFA for $a(b|c)^*$

Table encoding								
а	b	с						
q_1	error	error						
error	q_2	<i>q</i> 3						
error	q_2	<i>q</i> 3						
error	q ₂	<i>q</i> 3						
	a q ₁ error error error	abq1errorerrorq2errorq2errorq2	abCq1errorerrorerrorq2q3errorq2q3errorq2q3					

- Smaller than the NFA
- All transitions are deterministic (no need to backtrack!)
- Could be even smaller (see EaC§2.4.4 Hopcroft's Algorithm for minimal DFA)
- Can generate the lexer using skeleton recogniser seen earlier

What can be so hard?

Poor language design can complicate lexing

• PL/I does not have reserved words (keywords):

if (cond) then then = else; else else = then

- In Fortran & Algol68 blanks (whitespaces) are insignificant: do 10 i = 1,25 \cong do 10 i = 1,25 (loop, 10 is statement label) do 10 i = 1.25 \cong do10i = 1.25 (assignment)
- In C,C++,Java string constants can have special characters: newline, tab, quote, comment delimiters, ...

Building Lexer

The important point:

- All this technology lets us automate lexer construction
- Implementer writes down regular expressions
- Lexer generator builds NFA, DFA and then writes out code
- This reliable process produces fast and robust lexers

For most modern language features, this works:

- As a language designer you should think twice before introducing a feature that defeats a DFA-based lexer
- The ones we have seen (*e.g.* insignificant blanks, non-reserved keywords) have not proven particularly useful or long lasting

Next lecture

Parsing:

- Context-Free Grammars
- Dealing with ambiguity
- Recursive descent parser