

Compiling Techniques

Lecture 15: Register Allocation

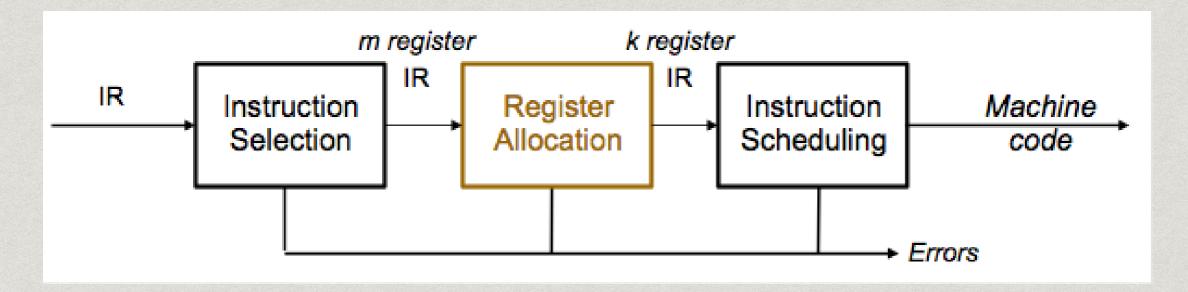
Christophe Dubach

EaC: Chapter 13

Overview

- Data Flow Analysis
- * Local Register Allocation
- * Global Register Allocation via Graph Colouring

Register Allocation



* Critical properties

- * Produce correct code that uses k (or fewer) registers
- * Minimise added loads and stores
- Minimise space used to hold spilled values
- Operate efficiently
 - * O(n), O(n log n), maybe O(n*n), but not O(exp(n))

Register Allocation

* The Task

- * At each point in the code, pick the values to keep in registers
- * Insert code to move values between registers & memory
- * Minimise inserted code
- * Make good use of any extra registers

* Allocation versus assignment

- * Allocation is deciding which values to keep in registers
- * Assignment is choosing specific registers for values
- * This distinction is often lost in the literature
- * The compiler must perform both allocation & assignment

Basic Blocks

* Definition

- * A basic block is a maximal length segment of straight-line (i.e., branch free) code
- * Importance (assuming normal execution)
 - * Strongest facts are provable for branch-free code
 - * If any statement executes, they all execute
 - * Execution is totally ordered

* Optimisation

- * Many techniques for improving basic blocks
- * Simplest problems
- * Strongest methods

Data Flow Analysis

* Idea

* Data-flow analysis derives information about the dynamic behaviour of a program by only examining the static code

* Example

- * How many registers do we need for the program below?
- Easy bound: the number of variables used (3)
- Better answer is found by considering the dynamic requirements of the program

```
a := 0
L1: b := a + 1
    c := c + b
    a := b *2
    if a < 9 goto L1
    return c</pre>
```

Liveness Analysis

* Definition

- * A variable is live at a particular point in the program if its value at that point will be used in the future (dead, otherwise).
- * To compute liveness at a given point, we need to look into the future

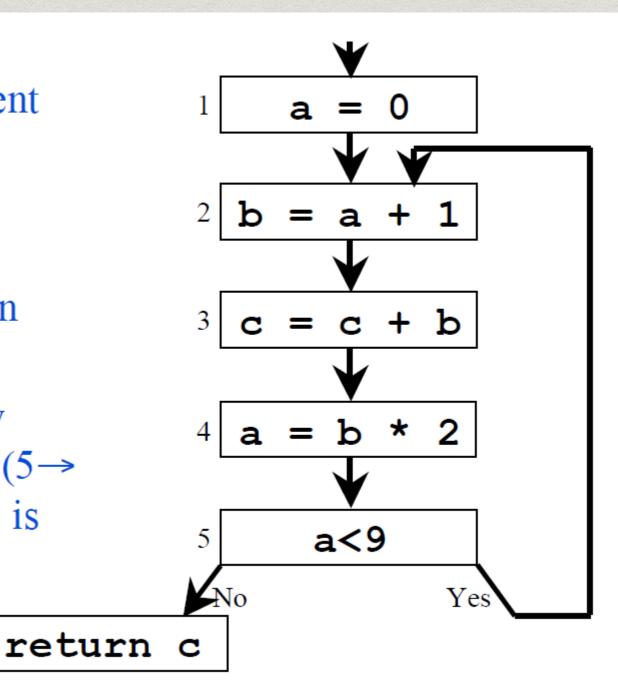
* Motivation: Register Allocation

- * A program contains an unbounded number of variables
- * Must execute on a machine with a bounded number of registers
- * Two variables can use the same register if they are never in use at the same time (i.e, never simultaneously live).
- * Register allocation uses liveness information

Example

What is the live range of b?

- Variable b is read in statement
 4, so b is live on the (3 → 4)
 edge
- Since statement 3 does not assign into b, b is also live on the (2→3) edge
- Statement 2 assigns b, so any value of b on the (1→2) and (5→2) edges are not needed, so b is dead along these edges



b's live range is $(2\rightarrow 3\rightarrow 4)$

Example Continued

Live range of a

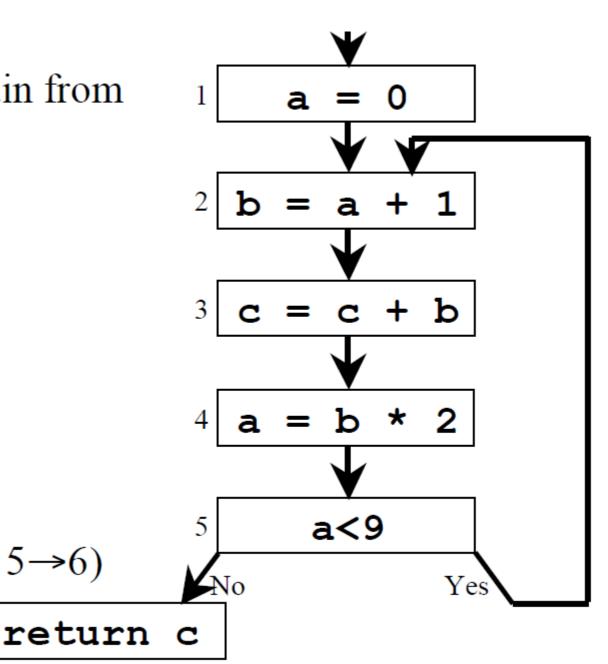
- **a** is live from $(1\rightarrow 2)$ and again from $(4\rightarrow 5\rightarrow 2)$
- **a** is dead from $(2 \rightarrow 3 \rightarrow 4)$

Live range of b

- **b** is live from $(2 \rightarrow 3 \rightarrow 4)$

Live range of c

- \mathbf{c} is live from (entry $\rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 2, 5 \rightarrow 6$)



Variables **a** and **b** are never simultaneously live, so they can share a register

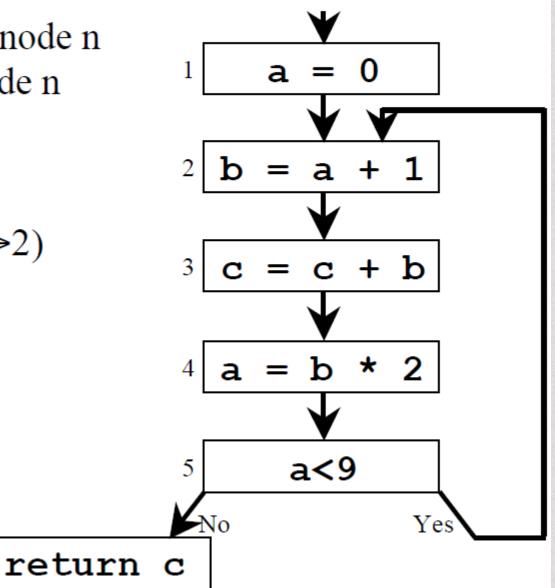
Terminology

Flow Graph Terms

- A CFG node has out-edges that lead to successor nodes and in-edges that come from predecessor nodes
- pred[n] is the set of all predecessors of node n
 succ[n] is the set of all successors of node n

Examples

- Out-edges of node 5: (5→6) and (5→2)
- $-\operatorname{succ}[5] = \{2,6\}$
- $\text{pred}[5] = \{4\}$
- $\text{ pred}[2] = \{1,5\}$



Uses and Defs

Def (or definition)

a = 0

- An assignment of a value to a variable
- def[v] = set of CFG nodes that define variable v
- def[n] = set of variables that are defined at node n

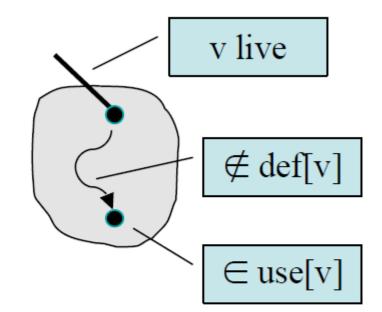
Use

a < 9?

- A read of a variable's value
- use[v] = set of CFG nodes that use variable v
- use[n] = set of variables that are used at node n

More precise definition of liveness

- A variable v is live on a CFG edge if
 - (1) \exists a directed path from that edge to a use of v (node in use[v]), and
 - (2) that path does not go through any def of v (no nodes in def[v])

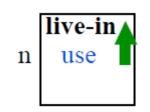


Computing Liveness

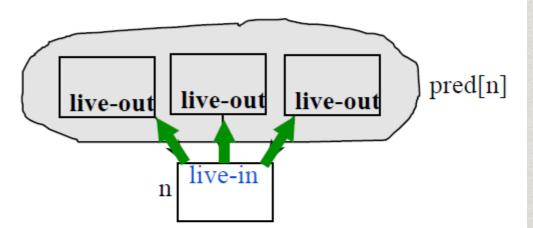
Rules for computing liveness

(1) Generate liveness:

If a variable is in use[n],
it is live-in at node n

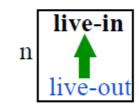


(2) Push liveness across edges:
If a variable is live-in at a node n
then it is live-out at all nodes in pred[n]



(3) Push liveness across nodes:

If a variable is live-out at node n and not in def[n] then the variable is also live-in at n



Data-flow equations

(1)
$$in[n] = use[n]$$
 U $(out[n] - def[n])$

$$out[n] = \bigcup_{s \in succ[n]} in[s]$$
 (2)

FIX-POINT ALGORITHM

Local Register Allocation

- * What's "local" ? (as opposed to "global")
 - * A local transformation operates on basic blocks
 - Many optimisations are done locally
- * Does local allocation solve the problem?
 - * It produces decent register use inside a block
 - * Inefficiencies can arise at boundaries between blocks
- * How many passes can the allocator make?
 - * This is an off-line problem
 - * As many passes as it takes

Observations

- * Allocator may need to reserve registers to ensure feasibility
 - * Must be able to compute addresses
 - * Requires some minimal set of registers, F
 - * F depends on target architecture
 - Use these registers only for spilling
- * What if k-F < |values| < k?
 - * Check for this situation
 - * Adopt a more complex strategy (iterate?)
 - * Accept the fact that the technique is an approximation
- * |values| > k?
 - * Some values must be spilled to memory

Top-down Versus Bottom-up Allocation

* Top-down allocator

- * Work from external notion of what is important
- * Assign registers in priority order
- * Save some registers for the values relegated to memory

* Bottom-up allocator

- * Work from detailed knowledge about problem instance
- * Incorporate knowledge of partial solution at each step
- Handle all values uniformly

Top-down Allocator

* The idea:

- * Keep busiest values in a register
- * Use the reserved set, F, for the rest

* Algorithm:

- * Rank values by number of occurrences
- * Allocate first k F values to registers
- * Rewrite code to reflect these choices
- * Common technique of 60's and 70's

Bottom-up Allocator

* The idea:

- * Focus on replacement rather than allocation
- * Keep values used "soon" in registers

* Algorithm:

- * Start with empty register set
- * Load on demand
- * When no register is available, free one

* Replacement:

- * Spill the value whose next use is farthest in the future
- * Prefer clean value to dirty value
- * Sound familiar? Think page replacement ...

Example

```
loadI
             1028
                         ⇒ r1
                                    // r1 ← 1028
load
           r1 \Rightarrow r2 // r2 \leftarrow MEM(r1) == y
mult
            r1, r2 \Rightarrow r3 // r3 \leftarrow 2 \cdot y
loadI
                        \Rightarrow r4 // r4 \leftarrow x
             X
             r4, r2 \Rightarrow r5 //r5 \leftarrow x - y
sub
loadI
                         \Rightarrow r6 // r6 \leftarrow z
             Z
mult
            r5, r6 \Rightarrow r7 //r7 \leftarrow z \cdot (x - y)
            r7, r3 \Rightarrow r8 //r5 \leftarrow z \cdot (x - y) - (2 \cdot y)
sub
             r8 \Rightarrow r1 // MEM(r1) \leftarrow z \cdot (x - y) - (2 \cdot y)
store
```

Live Ranges

```
loadI
         1028
                 \Rightarrow r1 // r1
        r1 \Rightarrow r2 // r1 r2
load
mult r1, r2 \Rightarrow r3 // r1 r2 r3
loadI
         x \Rightarrow r4 // r1 r2 r3 r4
      r4, r2 \Rightarrow r5 // r1 r3
sub
                                        r5
        z \Rightarrow r6 // r1 r3 r5 r6
loadI
mult r5, r6 \Rightarrow r7 // r1 r3
                                               r7
        r7, r3 \Rightarrow r8 // r1
sub
                                                  r8
         r8 \Rightarrow r1 //
store
```

Top Down (3 Regs)

```
loadI
          1028
                           // r1
                   ⇒ r1
         r1
                \Rightarrow r2 // r1 r2
load
        r1, r2 \Rightarrow r3 // r1 r2 r3
mult
loadI
             \Rightarrow r4 // r1 r2 r3 r4
          X
         r4, r2 \Rightarrow r5 // r1 r3
sub
                                          r5
                   \Rightarrow r6 // r1 r3 r5 r6
loadI
          Ζ
          r5, r6 \Rightarrow r7 // r1 r3
mult
                                                  r7
         r7, r3 \Rightarrow r8 // r1
sub
          r8 \Rightarrow r1 //
store
```

R3 LEAST FREQUENTLY USED

Bottom Up (3 Regs)

```
loadI
           1028
                             // r1
                    \Rightarrow r1
          r1 \Rightarrow r2 // r1 r2
load
          r1, r2 \Rightarrow r3 // r1 r2 r3
mult
                  \Rightarrow r4 // r1 r2 r3 r4 >3 REGISTERS
loadI
          X
sub
          r4, r2 \Rightarrow r5 // r1 r3
                                            r5
                  \Rightarrow r6 // r1 r3 r5 r6
loadI
          Z
          r5, r6 \Rightarrow r7 // r1 r3
mult
                                                    r7
          r7, r3 \Rightarrow r8 // r1
sub
                                                        r8
                             //
                   \Rightarrow r1
          r8
store
```

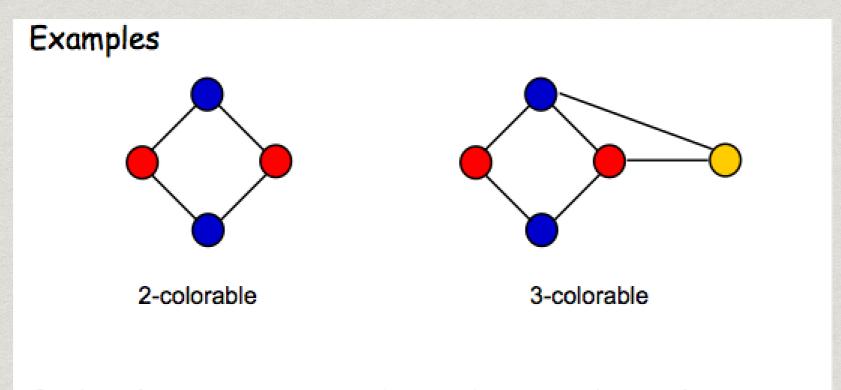
R1 USE FARTHEST AWAY

Graph Colouring Register Allocation

- * Idea:
- * Build a "conflict graph" or "interference graph"
 - Nodes Virtual Registers
 - * Edges Overlapping Live Ranges
- * Find a k-colouring for the graph, or change the code to a nearby problem that it can k-colour
 - * Colours Physical Registers

Graph Colouring

* A graph G is said to be k-colourable iff the nodes can be labeled with integers 1... k so that no edge in G connects two nodes with the same label



Each color can be mapped to a distinct physical register

Interference Graph

- * What is an "interference"? (or conflict)
 - * Two values interfere if there exists an operation where both are simultaneously live
 - * If x and y interfere, they cannot occupy the same register
- * To compute interferences, we must know where values are "live"
- * Interference graph Gi
 - * Nodes in Grepresent values, or live ranges
 - * Edges in Gi represent individual interferences
 - * For $x,y \in G_1$, $(x,y) \in G_1$ iff x and y interfere
 - * A k-colouring of G_I can be mapped into an allocation to k registers

Observations

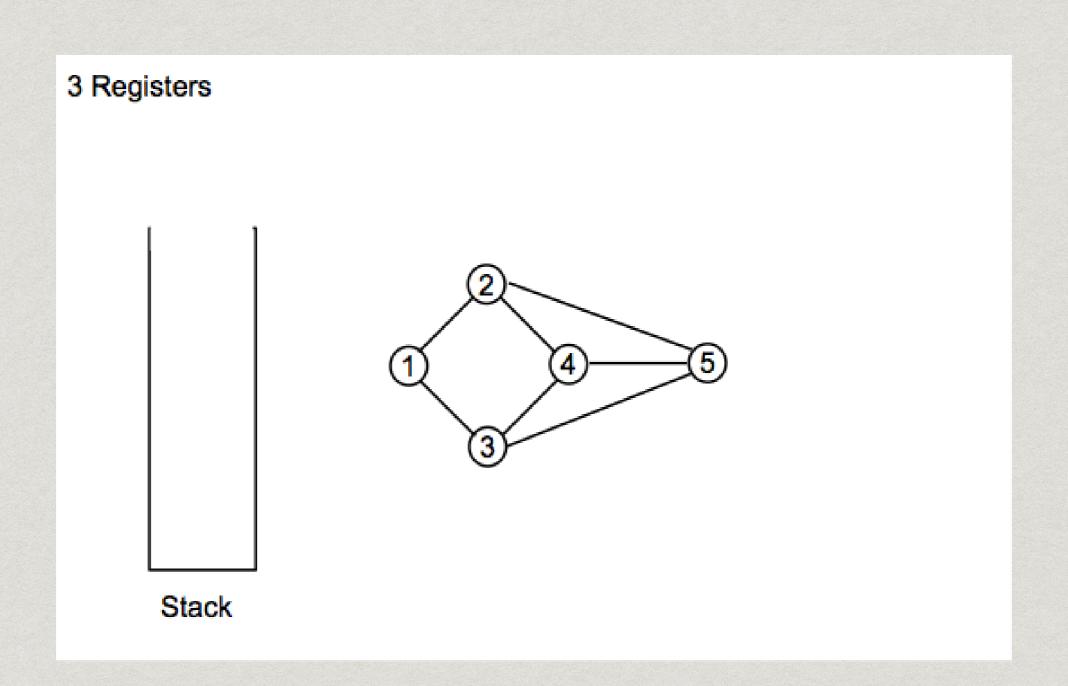
- * Suppose you have k registers
 - * Look for a k colouring
- * Any vertex n that has fewer than k neighbours in the interference graph(n° < k) can always be coloured!
- Pick any colour not used by its neighbours there must be one

Ideas behind algorithm

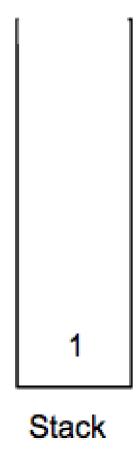
- * Pick any vertex n such that n°< k and put it on the stack
- Remove that vertex and all edges incident from the interference graph
 - * This may make some new nodes have fewer than k neighbours
- * At the end, if some vertex n still has k or more neighbours, then spill the live range associated with n
- * Otherwise successively pop vertices off the stack and colour them in the lowest colour not used by some neighbour

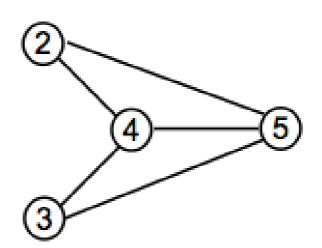
Chaitin's Algorithm

- * While 3 vertices with <k neighbours in Gi
 - * Pick any vertex n such that n°< k and put it on the stack
 - * Remove that vertex and all edges incident to it from Gi
 - * This will lower the degree of n's neighbours
- * If G₁ is non-empty (all vertices have k or more neighbours) then:
 - * Pick a vertex n (using some heuristic) and spill the live range associated with n
 - * Remove vertex n from G_I, along with all edges incident to it and put it on the stack
 - * If this causes some vertex in G_I to have fewer than k neighbours, then go to step 1; otherwise, repeat step 2
- * Successively pop vertices off the stack and colour them in the lowest colour not used by some neighbour



3 Registers

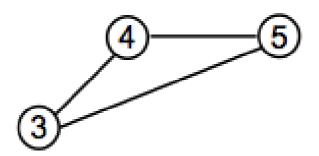




3 Registers

2

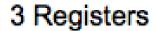
Stack



3 Registers

4 2 1

Stack

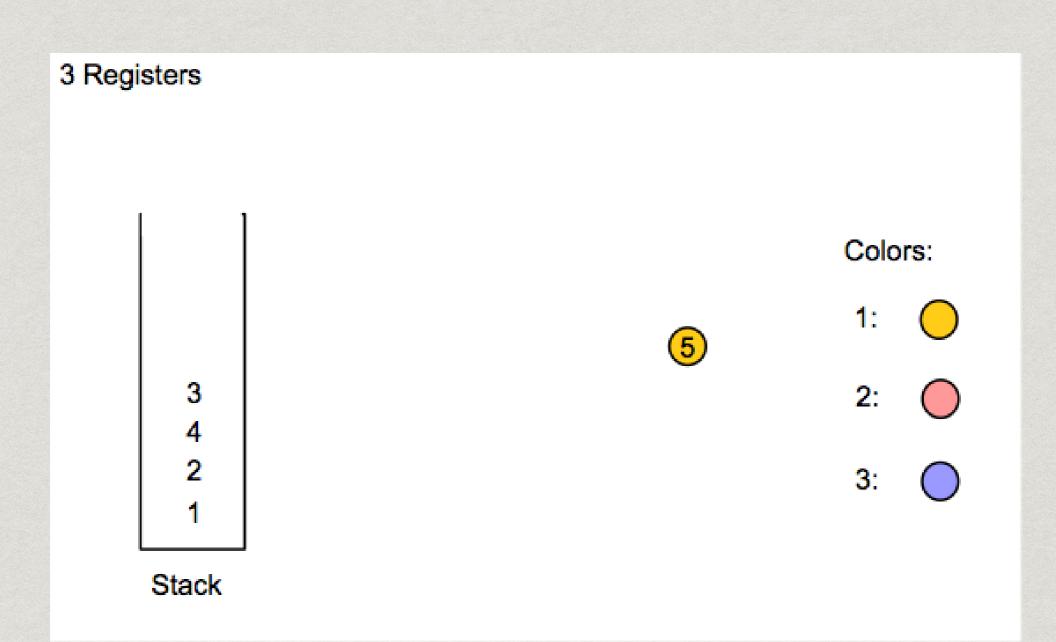


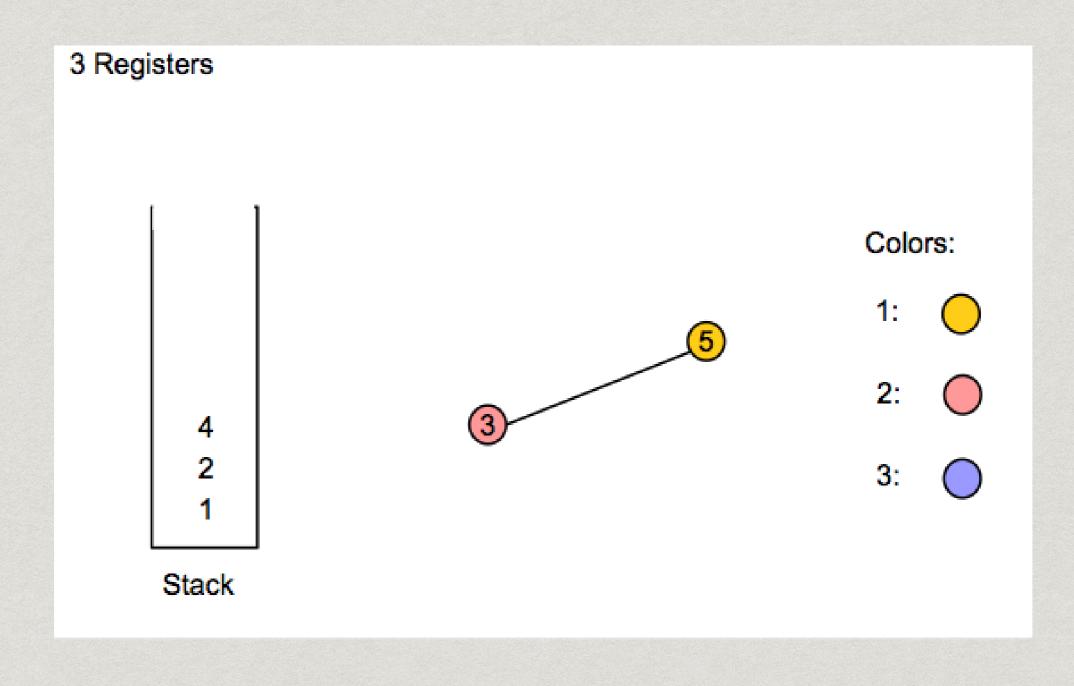
Stack

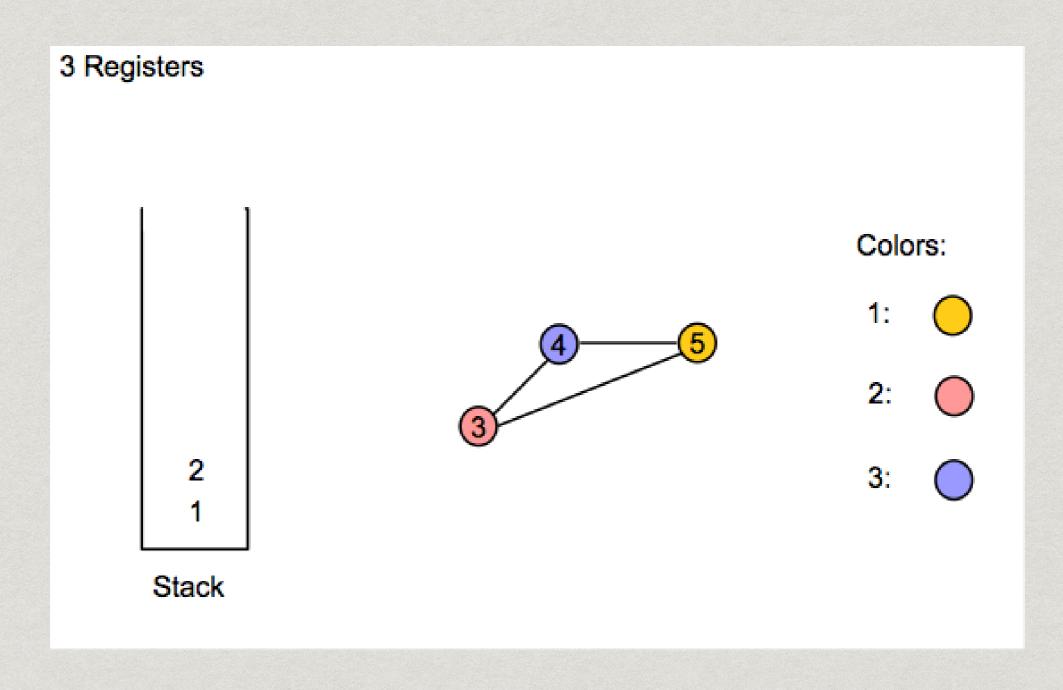
Colors:

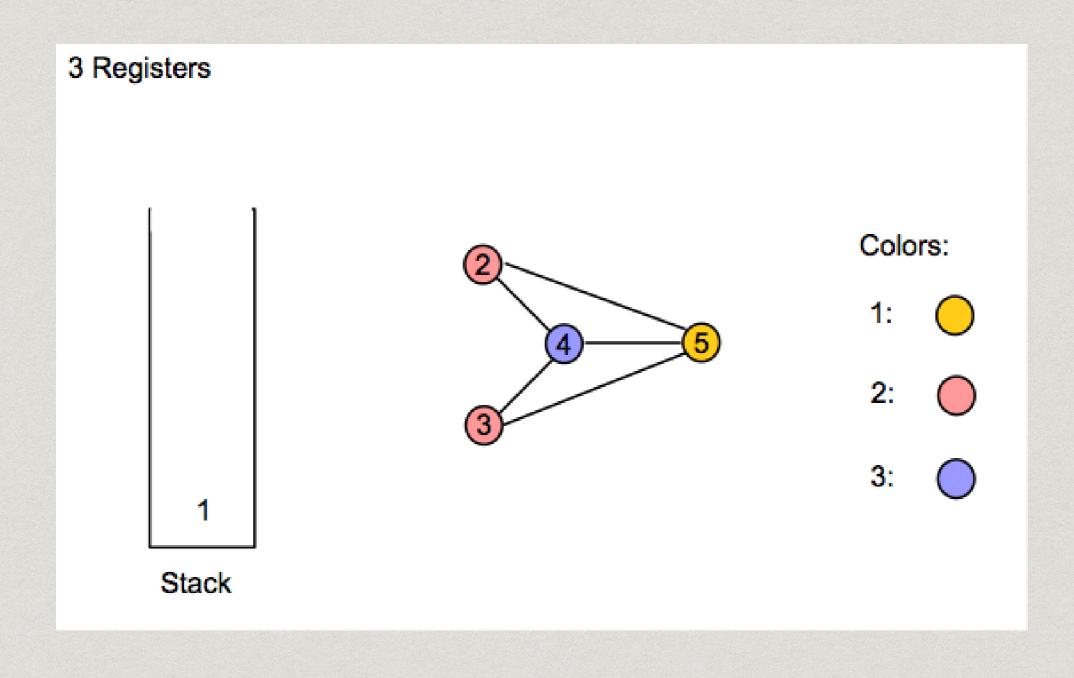
1: (

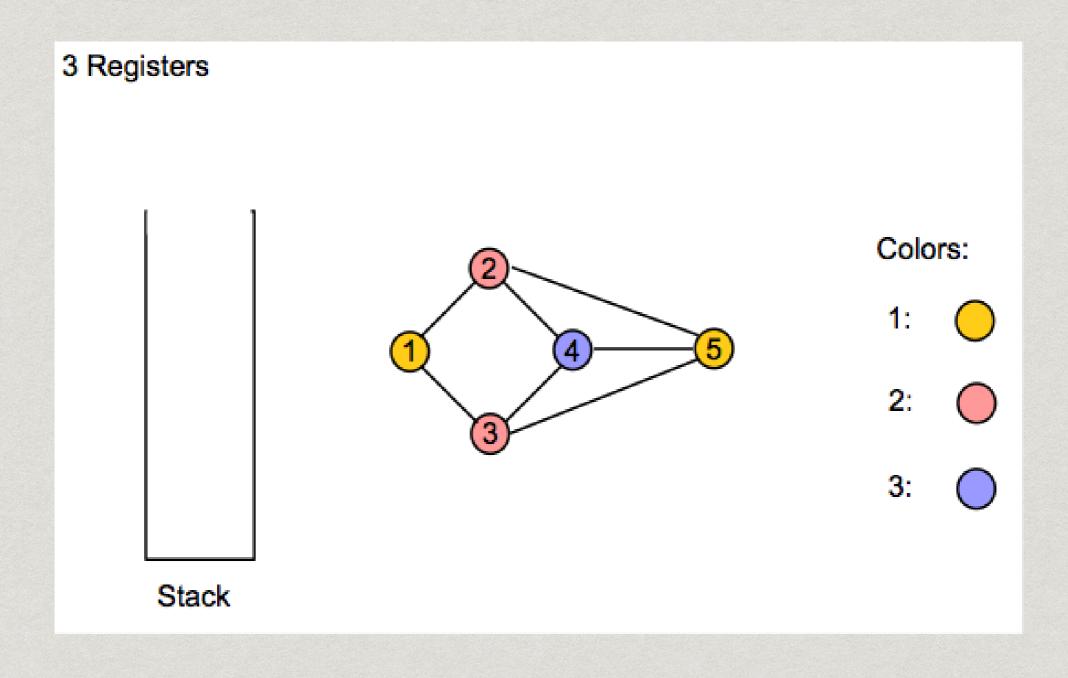
3:



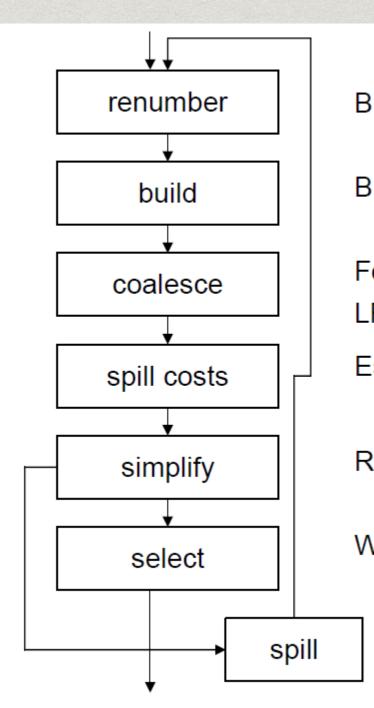








Chaitin Algorithm



Build SSA, build live ranges, rename

Build the interference graph

Fold unneeded copies

 $LR_x \rightarrow LR_y$, and $\langle LR_x, LR_y \rangle \notin G_I \Rightarrow$ combine $LR_x \& LR_y$

Estimate cost for spilling each live range

Remove nodes from the graph

While stack is non-empty \mathbf{re} pop n, insert n into G_l , & try to color it

Spill uncolored definitions & uses

while *N* is non-empty
if $\exists n$ with $n^{\circ} < k$ then
push *n* onto stack
else pick *n* to spill
push *n* onto stack
remove *n* from G_i