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The Concept

Many compilers use tree-structured IRs

• Abstract syntax trees generated in the parser

• Trees or DAGs for expressions
These systems might well use trees to represent target ISA

Consider the add operators

If we can match these “pattern trees” against IR trees, …
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trees
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(Ref ≈ Load)
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Activation Record Pointer
(a.k.a frame pointer)



Goal is to “tile” AST with operation trees

• A tiling is collection of <ast,op > pairs 
 ast is a node in the AST
 op is an operation tree
 <ast, op > means that op could implement the subtree at ast

• A tiling ‘implements” an AST if it covers every node in the 
AST and the overlap between any two trees is limited to a 
single node
 <ast, op>  tiling means ast is also covered by a leaf in 

another operation tree in the tiling, unless it is the root
 Where two operation trees meet, they must be compatible 

(expect the value in the same location)

Tree-pattern matching



Tile 3
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Tiling the Tree

+

VAL
ARP

NUM
4

-

REF

REF

VAL
ARP

NUM
-26

+

*x) - 2 * y

NUM
2

REF

LAB
@G

NUM
12

+

Each tile corresponds to a 
sequence of operations

Emitting those operations 
in an appropriate order 
implements the tree.
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Generating Code

Given a tiled tree

• Postorder treewalk, with node-dependent order for children
 Right child of  before its left child
 Might impose “most demanding first” rule …                 

• Emit code sequence for tiles, in order

• Tie boundaries together with register names
 Tile 6 uses registers produced by tiles 1 & 5
 Tile 6 emits “store rtile 5  rtile 1”
 Can incorporate a “real” allocator or can use “NextRegister++”



So, What’s Hard About This?

Finding the matches to tile the tree

• Compiler writer connects operation trees to AST subtrees
 Encode tree syntax, in linear form
 Provides a set of rewrite rules
 Associated with each is a code template



Notation

To describe these trees, we need a concise notation 
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+(ri,rj)

Linear prefix form
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(+(VAL1,NUM1) (REF(REF(+
(VAL2,NUM2)))

*x) - 2 * y(NUM3,(REF(+(LAB1,NUM3))))))

-(REF(REF(+(VAL2,NUM2))), 
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ST



Rewrite rules: LL Integer AST into ILOC 

Rule Cost Template

1 Goal  Assign 0

2 Assign  ST(Reg1,Reg2) 1 store    r2  r1

3 Assign  ST(+(Reg1,Reg2),Reg3) 1 storeAO  r3  r1,r2

4 Assign  ST(+(Reg1,NUM2),Reg3) 1 storeAI  r3  r1,n2

5 Assign  ST(+(NUM1,Reg2),Reg3) 1 storeAI  r3  r2,n1

6 Reg  LAB1 1 loadI    l1  rnew

7 Reg  VAL1 0

8 Reg  NUM1 1 loadI    n1  rnew

9 Reg  REF(Reg1) 1 load     r1  rnew

10 Reg  REF(+ (Reg1,Reg2)) 1 loadAO r1,r2  rnew

11 Reg  REF(+ (Reg1,NUM2)) 1 loadAI r1,n2  rnew

12 Reg  REF(+ (NUM1,Reg2)) 1 loadAI r2,n1  rnew



Rewrite rules: LL Integer AST into ILOC (part II)

Rule Cost Template

13 Reg  REF(+ (Reg1,Lab2)) 1 loadAI    r1,l2  rnew

14 Reg  REF(+ (Lab1,Reg2)) 1 loadAI    r2,l1  rnew

15 Reg  + (Reg1,Reg2) 1 addI   r1,r2  rnew

16 Reg  + (Reg1,NUM2) 1 addI   r1,n2  rnew

17 Reg  + (NUM1,Reg2) 1 addI   r2,n1  rnew

18 Reg  + (Reg1,Lab2) 1 addI   r1,l2  rnew

19 Reg  + (Lab1,Reg2) 1 addI   r2,l1  rnew

20 Reg  - (NUM1,Reg2) 1 rsubI  r2,n1  rnew

... ... ... ...

A real set of rules would cover more than signed integers …



So, What’s Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example
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So, What’s Hard About This?

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example
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What rules match tile 3?
  6:  Reg  LAB1 tiles the lower left node

  8: Reg  NUM1 tiles the bottom right node

 15: Reg  + (Reg1,Reg2) tiles the + node

  9:  Reg  REF(Reg1) tiles the REF

We denote this match as <6,8,15,9>
Of course, it implies <8,6,15,9>
Both have a cost of 4 



Finding matches
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Many Sequences Match Our Subtree

Cost Sequences

2 6,11 8,14

3 6,8,10 8,6,10 6,16,9 8,19,9

4 6,8,15,9 8,6,15,9

In general, we want the low cost sequence

• Each unit of cost is an operation   (1 cycle)

• We should favour short sequences



Finding matches
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Low Cost Matches 

Sequences with Cost of 2

6: Reg  LAB1

11: Reg  REF(+(Reg1,NUM2))

loadI  @G     ri

loadAI ri,12  rj

8: Reg  NUM1

14: Reg  REF(+(LAB1,Reg2))

loadI 12      ri

loadAI ri,@G  rj

These two are equivalent in cost

6,11 might be better, because @G may be longer than the 
immediate field



Tiling the Tree

Still need an algorithm

• Assume each rule implements one operator

• Assume operator takes 0, 1, or 2 operands

Now, …



Tiling the Tree

Tile(n)
   Label(n)  Ø
   if n has two children then
       Tile (left child of n)
       Tile (right child of n)
       for each rule r that implements n
           if (left(r)  Label(left(n)) and
              (right(r)  Label(right(n)) 
             then Label(n)  Label(n)  { r }

  else if n has one child
       Tile(child of n)
       for each rule r that implements n
           if (left(r)  Label(child(n)) 
              then Label(n)  Label(n)  { r }

  else  /* n is a leaf */
       Label(n)  {all  rules that implement n }

Match binary nodes 
against binary rules

Match unary nodes 
against unary rules

Handle leaves with 
lookup in rule table

Notes:
● left and right refer to the children of the AST node or right-hand sides of a rule
● implements: e.g. rule 9 implements REF



Tiling the Tree

This algorithm

• Finds all matches in rule set

• Labels node n with that set

• Can keep lowest cost match
   at each point

• Leads to a notion of local 
   optimality — lowest cost at 
   each point

• Spends its time in the two
   matching loops

Tile(n)
   Label(n)  Ø
   if n has two children then
       Tile (left child of n)
       Tile (right child of n)
       for each rule r that implements n
           if (left(r)  Label(left(n)) and
              (right(r)  Label(right(n)) 
             then Label(n)  Label(n)  { r }

  else if n has one child
       Tile(child of n)
       for each rule r that implements n
           if (left(r)  Label(child(n)) 
              then Label(n)  Label(n)  { r }

  else  /* n is a leaf */
       Label(n)  {all  rules that implement n }



The Big Picture

• Tree patterns represent AST and ASM

• Can use matching algorithms to find low-cost tiling of AST

• Can turn a tiling into code using templates for matched rules

• Techniques (& tools) exist to do this efficiently

Hand-coded matcher like Tile Avoids large sparse table
Lots of work

Encode matching as an 
automaton

O(1) cost per node
Tools like BURS (bottom-
up rewriting system), 
BURG

Use parsing techniques
Uses known technology
Very ambiguous grammars

Linearize tree into string and 
use string searching algorithm 
(Aho-Corasick)

Finds all matches



Next Lecture

• Register Allocation
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