Compiling Techniques

Lecture 12: Code generation
(EaC Chapter 7)

Christophe Dubach / Lu Li

23 October 2018

Christophe Dubach / Lu Li

Table of contents

@ Code Shapes (EaC Ch. 7))
@ Boolean and Relational Values
@ Control-Flow

e Memory management
@ Static vs Dynamic
@ Data structures

© Function calls

Christophe Dubach / Lu Li

Control-Flow

Boolean and Relational Values

How to represent (x<10 && y>3)7?
It depends on the target machine

Several approaches:
@ Numerical representation
e Positional Encoding (e.g. MIPS assembly)
e Conditional Move and Predication

Correct choice depends on both context and ISA (Instruction Set
Architecture)

Christophe Dubach / Lu Li

Control-Flow

Numerical Representation

@ Assign values to true and false, usually 1 and 0

@ Use comparison operator from the ISA to get a value from a
relational expression

x <y cmp LT rx, ry — rl

cmp LT rx,ry—rl

if (x <vy) cbr rl —L1
stmtl stmt2
else br —Le
stmt2 L1: stmtl
Le:

Christophe Dubach / Lu Li

Control-Flow

Positional Encoding

What if the ISA does not provide comparison operators that
returns a value?

@ Must use conditional branch to interpret the result of a
comparison

@ Necessitates branches in the evaluation

@ This is the case for MIPS assembly (and Java ByteCode for
instance)

br LT rx,ry — Lt

loadl O — rl
br — Lg
Lr: loadl 1 — rl

LEZ

Christophe Dubach / Lu Li

Control-Flow

If the result is used to control an operation, then positional
encoding is not that bad.

if (x <vy)
a=c¢+ d;
else

a—¢e + f;

Corresponding assembly code

Boolean comparison | Positional encoding
cmp LT rx,ry—rl br LT rx,ry—Lr
cbr rl — LT

add re,rf—ra
add re, rf—ra
o L br —Le
E .
Ly:add e = Lt:add rc,rd—ra
LE 500 o
Le:...

Christophe Dubach / Lu Li

Control-Flow

Conditional Move and Predication

Conditional move and predication can simplify this code.

if (x <vy)
a=c¢c+ d;
else

a=¢e + f;

Corresponding assembly code

Conditional Move ‘ Predicated Execution
cmp_ LT rx,ry—rl

add rc,rd—r2 CHLTT [2X 737 0
add reyrf—>r3 (r1)? add rc,rd—ra
cmov 1l r2’r3—>ra ('r1)? add re, rf—ra

A\

Christophe Dubach / Lu Li

Control-Flow

Last word on boolean and relational values: consider the following
code x = (a<b) & (c<d)

Corresponding assembly code

Positional encoding Boolean Comparison
br LT ra,rb—L;

br —)Lz
Li: br LT rc,rd—L3 cmp_LT ra,rb—rl
L,: loadl O —rx | cmp_LT rc,rd—r2
br —Le | and rl , r2—rx

L3: loadl 1 — rx

Here the boolean comparison produces much better code.

Best choice depends on two things

o Context

@ Hardware

Christophe Dubach / Lu Li

Boolean and Relational Values

Control-Flow

o If-then-else
e Loops (for, while, ...)

@ Switch/case statements

Christophe Dubach / Lu Li

Boolean and Relational Values

Follow the model for evaluating relational and boolean with
branches.

Branching versus predication (e.g. 1A-64, ARM ISA) trade-off:

@ Frequency of execution:
uneven distribution, try to speedup common case
@ Amount of code in each case:
unequal amounts means predication might waste issue slots

@ Nested control flow:
any nested branches complicates the predicates and makes
branching attractive

Christophe Dubach / Lu Li

Boolean and Relational Values

Basic pattern

|

Pre-test @ evaluate condition before the loop
] (if needed)
Loop body @ evaluate condition after the loop
] @ branch back to the top (if needed)
Post-test while, for and do while loops all fit this
l basic model.
Next block

|

Christophe Dubach / Lu Li

Boolean and Relational Values

Corresponding assembly

loadl 1 — rl
. . . loadl 100 — r2
for {045 J<loms Gi) | br.GE rl,r2 — L2
, body iy [l

- addl r1,1 — rl
next stm br LT rl1,r2 — L1
L2: next stmt

Example: for loop

Christophe Dubach / Lu Li

Boolean and Relational Values

Exercise

Write the assembly code for the following while loop:

while (x >=y) {
body
}

next stmt

Christophe Dubach / Lu Li

Boolean and Relational Values

Most modern programming languages include a break statements

@ Exits from the innermost control-flow statement
e Out of the innermost loop
e Out of a case statement

@ Solution:

e use an unconditional branch to the next statement following
the control-flow construct (loop or case statement).
o skip or continue statement branch to the next iteration (start

of the loop)

Christophe Dubach / Lu Li

Boolean and Relational Values

Case Statement (switch)

Case statement

© Evaluate the controlling expression

switch (c) { @ Branch to the selected case

case 'a’': stmtl;

case 'b’': stmt2: break: © Execute the code for that case

case 'c': stmt3; @ Branch to the statement after the
¥ case

Part 2 is key.]
Strategies:

@ Linear search (nested if-then-else)
@ Build a table of case expressions and use binary search on it

@ Directly compute an address (requires dense case set)

Christophe Dubach / Lu Li

Boolean and Relational Values

Exercise

Knowing that the character 'a’ corresponds to the decimal value
97 (ASCII table), write the assembly code for the example below
using linear search.

char c;

switch (c¢) {
case 'a’: stmtl;
case 'b’: stmt2; break;
case 'c': stmt3; break;
case 'd’: stmté4;

stmtb ;

Exercise : can you do it without any conditional jumps?

Hint: use the JR MIPS instruction which jumps directly to an
address stored in a register.

Christophe Dubach / Lu Li

Data structures

Static versus Dynamic

@ Static allocation: storage can be allocated directly by the
compiler by simply looking at the program at compile-time.
This implies that the compiler can infer storage size
information.

@ Dynamic allocation: storage needs to be allocated at run-time
due to unknown size or function calls.

Christophe Dubach / Lu Li

Data structures

Heap, Stack, Static storage

Static storage:

@ Text: contains the instructions e

ig

e Data: contains statically allocated address| stack
data (e.g. global variables, string

literals, global arrays of fixed size) dynamic
allocation

Dynamic Storage:

@ Stack: used for function calls, used heap
for local variables (if known size), data ctatic
register spilling (register allocation) low| _text allocation

. i address
@ Heap: used for dynamic allocation

(e.g. malloc)

Christophe Dubach / Lu Li

Data structures

Example

char c; data
int arr[4]; data
void foo () { addr;(i-:gs: p——
int arr2[3]; stack el
intx ptr = heap
(int*) malloc(sizeof(int)x*2); dynamic
allocation
R o
int b; stack heap
bar(" hello"); data data }Stati“ .
} low text allocation
address

Christophe Dubach / Lu Li

Static vs Dynamic

Primitive types and Arrays

Typically

@ int and pointer types (e.g. charx, intx, voidx) are 32 bits (4
byte).

@ char is 1 byte

However, it depends on the data alignment of the architecture. For
instance, char typically occupies 4 bytes on the stack (if the data
alignment is 4 bytes).

Christophe Dubach / Lu Li

Static vs Dynamic

Structure types

In a C structure, all values are aligned to the data alignment of the
architecture (unless packed directive is used).

struct myStruct_t {
char c;
int x;

Je

struct myStruct_t ms;

In this example, it is as if the value c uses 4 bytes of data.

.data
ms_myStruct_t_c: .space 4
ms_myStruct_t_x: .space 4
. text

Christophe Dubach / Lu Li

Static vs Dynamic

Stack variable allocation

The compiler needs to keep track of where variables are allocated
on the stack.

@ Problem: stack pointer can move.

@ Solution: use another pointer, the frame pointer

Frame pointer

@ The frame pointer must be initialised to the value of the stack
pointer, just when entering the function (in the prologue).

@ Access to variables allocated on the stack can then be
determined as a fixed offset from the frame pointer.

Christophe Dubach / Lu Li

Static vs Dynamic

int foo() {
}
void main() { call stack
foo(a,b) main
o (arguments)
} FP Iocalgvar\ables
@ The frame pointer (FP) always foo

points to the beginning of the local sp—
variables of the current function,
just after the arguments (if any).

@ The stack pointer (SP) always
points at the bottom of the stack,
where memory is free (the stack
grows downwards).

main
stack
frame

foo
stack
frame

Christophe Dubach / Lu Li

Function calls

What happens during a function call?

@ The caller needs to pass the

int bar(int a) { arguments to the callee
} return 3+a; @ The callee needs to pass the return
void foo() { value to the caller
l');r(4) But also:
@ The values stored in temporaries
1 registers needs to be saved
@ foo is the caller somehow.
@ bar is the callee @ Need to remember where we came
from so that we can return to the
call site.

Christophe Dubach / Lu Li

General convention:

@ precall: pass the arguments via
dedicated registers or stack

function foo

function bar

@ postreturn: read the return value from p—
dedicated register or stack precel 4’

@ prologue: initialised the frame pointer ostretum w
and save all the temporary registers
onto the stack

epilogue

@ epilogue: restore all the temporary
registers from the stack

Other convention possible but may lead to larger code size. J

Christophe Dubach / Lu Li

Example

int bar (int a) {
return 3+a;

}

bar:

addi $sp, $sp, -4 # decrement stack pointer by 4

sW $t0, 0($sp) # save $t0 onto the stack

1i $t0,3 # load 3 into $tO

add $t0,%$a0,$t0 # add tO0 and first argument

add $v0, $zero,$t0 # copy the result in return registefr
1w $t0, 0($sp) # restore original $t0 from stack
addi $sp, $sp, 4 # increment stack pointer by 4

jr $ra # jumps to return address

v

Christophe Dubach / Lu Li

Example

void foo() {

bar (4)

}
foo
1i $t0, 4 # store 4 into $tO

add $a0, $zero, $t0 # copy value into argument registefr
jal Dbar # jump and link (ra=PC+8)

add $t0, $zero, $vO # copy returned value to $tO

Christophe Dubach / Lu Li

Final words

What if need to pass more than 4 arguments (mips only has 4
“argument” registers by convention):

@ Use the stack, by pushing the arguments in the precall

@ Read the argument from the stack using the frame pointer
What if callee makes a call to another function?

@ Need to save the return address of caller and frame pointer on
the stack and restore after the call (should be part of
precall /postreturn).

Christophe Dubach / Lu Li

Next lecture

Instruction selection
@ Peephole Matching

@ Tree-pattern matching

Christophe Dubach / Lu Li

	Code Shapes (EaC Ch. 7))
	Boolean and Relational Values
	Control-Flow

	Memory management
	Static vs Dynamic
	Data structures

	Function calls

