Introduction to LLVM

UG3 Compiling Techniques
Autumn 2017

Contact Information

* Instructor: Aaron Smith

 Email: aaron.l.smith@ed.ac.uk

 Office: IF 1.29

e Office Hours: Anytime by appointment (i.e. send an email)

Schedule

e Week 1
* Nov 14: Introduction to LLVM
* Nov 17: How to Write an LLVM Pass
* LAB: Your First LLVM Pass

* Week 2
* Nov 21: LLVM Internals Part |
* Nov 24: LLVM Internals Part I
 LAB: Dead Code Elimination

* Week 3
* Nov 28: Dataflow Analysis
* Dec 1: Compiler Trivial!!
e LAB: Work on Final Project

Project Overview

* LLVM is written in C++
* But no templates or tricky C++ code
* If you know C or Java you will be OKAY

* LLVM sources are hosted in both SVN and Git
* You can use either but we will only discuss Git in the course
* You need to submit the final project to Bitbucket

* Project will be graded on Linux
* LLVM works on OS X and Windows but we will only grade on Linux
* If you work on other platforms make sure it also works on Linux!

Getting Started

* Read the original LLVM paper (optional)

e LLVM: A Compilation Framework for Lifelong Program Analysis &
Transformation, Chris Lattner and Vikram Adve, CGO 2004

* http://dl.acm.org/citation.cfm?id=977673

* Read the Dr Dobbs article on LLVM (optional)
* The Design of LLVM, Chris Lattner, 2012

* http://www.drdobbs.com/architecture-and-design/the-design-of-
llvm/240001128

* Look at LLVM.org

What is LLVM?

* An open source framework for building tools

* Tools are created by linking together various libraries provided by the LLVM
project and your own

* An extensible, strongly typed intermediate representation, i.e. LLVM IR
 https://llvm.org/docs/LangRef.html

* An industrial strength C/C++ optimizing compiler

* Which you might know as clang/clang++ but these are really just drivers that
invoke different parts (libraries) of LLVM

History of LLVM

 Started by Chris Lattner at UIUC ~2000

* First commercial use was as an OpenGL Jitter on OS X at Apple

 Evolved over many years into a complete C/C++ compiler which until
recently required parts of GCC

* llvm-gcc

* Many uses of LLVM in the world today
* OS X (XCode) platform compiler
* FreeBSD platform compiler
Google Android NDK compiler
ARM reference compiler
Microsoft DirectX shader compiler
NVIDIA CUDA compiler

Typical Optimizing Compiler

libraries/objects

Frontend Optimizer Backend . Linker

a.out

LLVM Optimizing Compiler

libraries/objects

LLVM Bitcode

C/C++, Loop unrolling, ARM, x86,

FORTRAN, Dead code PowerPC, MIPS,

Python, Ruby, elimination, SystemzZ, a.out
Javascript Common Hexagon,

Objective-C, subexpression WebAssembly,

Haskell, Lua, elimination,

What Tools Does LLVM Provide?

* Lots! clang, opt, llc, lld are just four of many

What Optimizations Does LLVM Support?

* Lots! Let’s see by running ‘opt --help'

How to Get the LLVM Sources

* LLVM is split into multiple Git repositories
* For this class you will need the clang and |lvm git repos

* Choose a directory to clone the repos into
* The LLVM repo is always cloned first
* Other repos are cloned inside the LLVM directory

cd directory-to-clone-into

git clone https://github.com/Illvm-mirror/llvm
cd llvm/tools

git clone https://github.com/llvm-mirror/clang

How to Build LLVM

LLVM requires Cmake version 3.4.2+ to generate the build files
* The latest version of Cmake is already installed on DICE

By default Cmake generates a debug version of the build files that compile LLVM
at the lowest optimization level and with assertions enabled and debug symbols
 Easiest to debug but slow to compile large programs and takes up the most disk space

Cmake supports several build systems
* make, XCode, Visual Studio, Ninja and more
* If you are working on DICE you will generate Makefiles for make

Create a new directory outside the LLVM source directory for your build

cd directory-for-build
cmake path-to-llvm-sources
cmake --build .

Let’s Try Compiling a Program with LLVM

How to Generate LLVM IR from Source

* To generate LLVM IR use clang with ‘-emit-llvm’ option
» ‘-S’ generates a text file and ‘—c’ generates a binary
 clang foo.c —emit-llvm =S
* clang foo.c —emit-llvm —c

* To convert a binary file (.bc) to a text file (.Il) use the llvm disassembler
* |lvm-dis foo.bc

* To convert a text file (.Il) to a binary file (.bc) use the llvm assembler
* |lvm-as foo.ll

Let’s Look Closer at LLVM IR

* Some characteristics of LLVM IR
* RISC-like instruction set
Strongly typed
Explicit control flow
Uses a virtual register set with infinite temporaries (%)
In Static Single Assignment form
Abstracts machine details such as calling conventions and stack references

* LLVM IR reference is online
* https://llvm.org/docs/LangRef.html

global i32 10, align 4

Do you remember how to the
define i32 @main() #0 {

generate bitcode? 51 = alloca i32, align 4

%2 alloca i32, align 4

store i32 0, i32* %1, align 4
store 132 0, i32* %2, align 4
$3 = load i32, i32* @x, align 4
%4 = icmp ne i32 %3, 0

br il %4, label %5, label %8

return n;

;<label>:5:

$6 = load i32, i32* %2, align 4
$7 = add nsw i32 %6, 1

store 132 %7, i32* %2, align 4
br label %8

Where are the virtual registers?

What are the types?

Where is the control flow? ;<label>:8:

What does ‘@x’ mean? %9 = load i32, i32* %2, align 4
. , ret 132 %9

How about ‘alloca’? }

Optimizing LLVM IR

* Previous LLVM IR was not optimal
* We know the program returns 1 by looking at it

* Let’s optimize the bitcode with ‘opt’
* By default ‘opt’ does nothing, you must specify an optimization such as ‘02’

define i32 @main()
local_unnamed_addr #0 {
opt —02 foo.ll —o foo-new.bc %1 =load i32,i32* @x, align 4
%2 =icmpnei32%1,0

%. = zext il %2 toi32
return n; reti32 %.

}

Generating Machine Code from LLVM IR

e Use ‘lIc’

Next Time

* How to write your own LLVM pass

