
Introduction	to	LLVM
UG3	Compiling	Techniques

Autumn 2017



Contact	Information

• Instructor:	Aaron	Smith
• Email:	aaron.l.smith@ed.ac.uk
• Office:	IF	1.29
• Office	Hours:	Anytime	by	appointment	(i.e.	send	an	email)



Schedule
• Week	1

• Nov	14:	Introduction	to	LLVM	
• Nov	17:	How	to	Write	an	LLVM	Pass
• LAB:	Your	First	LLVM	Pass

• Week	2	
• Nov	21:	LLVM	Internals	Part	I
• Nov	24:	LLVM	Internals	Part	II	
• LAB:	Dead	Code	Elimination

• Week	3
• Nov	28:	Dataflow	Analysis
• Dec	1:	Compiler	Trivia!!
• LAB:	Work	on	Final	Project



Project	Overview

• LLVM	is	written	in	C++
• But	no	templates	or	tricky	C++	code
• If	you	know	C	or	Java	you	will	be	OKAY

• LLVM	sources	are	hosted	in	both	SVN	and	Git
• You	can	use	either	but	we	will	only	discuss	Git in	the	course
• You	need	to	submit	the	final	project	to	Bitbucket

• Project	will	be	graded	on	Linux
• LLVM	works	on	OS	X	and	Windows	but	we	will	only	grade	on	Linux
• If	you	work	on	other	platforms	make	sure	it	also	works	on	Linux!

• Final	project	is	due	by	Monday,	January	15,	2018	at	10am



Getting	Started

• Read	the	original	LLVM	paper	(optional)
• LLVM:	A	Compilation	Framework	for	Lifelong	Program	Analysis	&	
Transformation,	Chris	Lattner and	Vikram Adve,	CGO	2004
• http://dl.acm.org/citation.cfm?id=977673

• Read	the	Dr Dobbs	article	on	LLVM	(optional)
• The	Design	of	LLVM,	Chris	Lattner,	2012
• http://www.drdobbs.com/architecture-and-design/the-design-of-
llvm/240001128

• Look	at	LLVM.org



What	is	LLVM?

• An	open	source	framework	for	building	tools
• Tools	are	created	by	linking	together	various	libraries	provided	by	the	LLVM	
project	and	your	own

• An	extensible,	strongly	typed	intermediate	representation,	i.e.	LLVM	IR
• https://llvm.org/docs/LangRef.html

• An	industrial	strength	C/C++	optimizing	compiler
• Which	you	might	know	as	clang/clang++	but	these	are	really	just	drivers	that	
invoke	different	parts	(libraries)	of	LLVM



History	of	LLVM

• Started	by	Chris	Lattner at	UIUC	~2000
• First	commercial	use	was	as	an	OpenGL	Jitter	on	OS	X	at	Apple	

• Evolved	over	many	years	into	a	complete	C/C++	compiler	which	until	
recently	required	parts	of	GCC
• llvm-gcc

• Many	uses	of	LLVM	in	the	world	today
• OS	X	(XCode)	platform	compiler	
• FreeBSD	platform	compiler
• Google	Android	NDK	compiler	
• ARM	reference	compiler	
• Microsoft	DirectX	shader compiler
• NVIDIA	CUDA	compiler



Typical	Optimizing	Compiler

Frontend BackendOptimizer Linker
.o

a.out

libraries/objects



LLVM	Optimizing	Compiler

clang llcopt

LLVM	Bitcode

lld
.o.bc.bc

a.out

libraries/objects

C/C++,	
FORTRAN,	
Python,	Ruby,
Javascript
Objective-C,	
Haskell,	Lua,
…

ARM,	x86,	
PowerPC,	MIPS,		
SystemZ,	
Hexagon,	
WebAssembly,
…

Loop	unrolling,
Dead	code	
elimination,
Common	
subexpression	
elimination,	
…



What	Tools	Does	LLVM	Provide?
• Lots!	clang,	opt,	llc,	lld are	just	four	of	many



What	Optimizations	Does	LLVM	Support?
• Lots!	Let’s	see	by	running	‘opt	--help'



How	to	Get	the	LLVM	Sources

• LLVM	is	split	into	multiple	Git repositories
• For	this	class	you	will	need	the	clang and	llvm git repos

• Choose	a	directory	to	clone	the	repos	into
• The	LLVM	repo	is	always	cloned	first
• Other	repos	are	cloned	inside	the	LLVM	directory

cd	directory-to-clone-into
git clone	https://github.com/llvm-mirror/llvm
cd	llvm/tools
git clone	https://github.com/llvm-mirror/clang



How	to	Build	LLVM
• LLVM	requires	Cmake version	3.4.2+	to	generate	the	build	files

• The	latest	version	of	Cmake is	already	installed	on	DICE

• By	default	Cmake generates	a	debug	version	of	the	build	files	that	compile	LLVM	

at	the	lowest	optimization	level	and	with	assertions	enabled	and	debug	symbols

• Easiest	to	debug	but	slow	to	compile	large	programs	and	takes	up	the	most	disk	space

• Cmake supports	several	build	systems

• make,	XCode,	Visual	Studio,	Ninja	and	more

• If	you	are	working	on	DICE	you	will	generate	Makefiles for	make

• Create	a	new	directory	outside	the	LLVM	source	directory	for	your	build

cd	directory-for-build

cmake path-to-llvm-sources

cmake --build	.



Let’s	Try	Compiling	a	Program	with	LLVM



How	to	Generate	LLVM	IR	from	Source

• To	generate	LLVM	IR	use	clang	with	‘-emit-llvm’	option
• ‘–S’	generates	a	text	file	and	‘–c’	generates	a	binary
• clang	foo.c –emit-llvm –S
• clang	foo.c –emit-llvm –c

• To	convert	a	binary	file	(.bc)	to	a	text	file	(.ll)	use	the	llvm disassembler
• llvm-dis	foo.bc

• To	convert	a	text	file	(.ll)	to	a	binary	file	(.bc)	use	the	llvm assembler
• llvm-as	foo.ll



Let’s	Look	Closer	at	LLVM	IR

• Some	characteristics	of	LLVM	IR
• RISC-like	instruction	set
• Strongly	typed
• Explicit	control	flow
• Uses	a	virtual	register	set	with	infinite	temporaries	(%)
• In	Static	Single	Assignment	form
• Abstracts	machine	details	such	as	calling	conventions	and	stack	references

• LLVM	IR	reference	is	online
• https://llvm.org/docs/LangRef.html



@x = global i32 10, align 4

define i32 @main() #0 {
%1 = alloca i32, align 4
%2 = alloca i32, align 4
store i32 0, i32* %1, align 4
store i32 0, i32* %2, align 4
%3 = load i32, i32* @x, align 4
%4 = icmp ne i32 %3, 0
br i1 %4, label %5, label %8

;<label>:5:
%6 = load i32, i32* %2, align 4
%7 = add nsw i32 %6, 1
store i32 %7, i32* %2, align 4
br label %8

;<label>:8:
%9 = load i32, i32* %2, align 4
ret i32 %9

}

int x = 7;
int main() {

int n = 0;
if (x != 0)

n++;
return n;

}

Where	are	the	virtual	registers?
What	are	the	types?
Where	is	the	control	flow?
What	does	‘@x’	mean?
How	about	‘alloca’?

Do	you	remember	how	to	the
generate	bitcode?



Optimizing	LLVM	IR
• Previous	LLVM	IR	was	not	optimal
• We	know	the	program	returns	1	by	looking	at	it
• Let’s	optimize	the	bitcode with	‘opt’
• By	default	‘opt’	does	nothing,	you	must	specify	an	optimization	such	as	‘–O2’

int x = 7;
int main() {

int n = 0;
if (x != 0)

n++;
return n;

}

define	i32	@main()	
local_unnamed_addr #0	{
%1	=	load	i32,	i32*	@x,	align	4
%2	=	icmp ne	i32	%1,	0
%.	=	zext i1	%2	to	i32
ret	i32	%.
}

opt	–O2	foo.ll –o	foo-new.bc



Generating	Machine	Code	from	LLVM	IR

• Use	‘llc’



Next	Time
• How	to	write	your	own	LLVM	pass


