
Introduction
Name Analysis

Compiling Techniques
Lecture 8: Semantic Analysis

Christophe Dubach

6 October 2017

Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Semantic Analysis

Beyond Syntax

There is a level of correctness deeper than syntax (grammar).

Example: broken C program

f oo (i n t a , b , c , d) { . . . }

bar () {
i n t f [3] , g [0] , h , i , j , k ;
char ∗ p ;
foo (h , i , ”ab” , j , k) ;
k = f ∗ i+j ;
h = g [1 7] ;
p r i n t f (”%s ,%s \n” ,p , q) ;
p = 10 ;

}

What is wrong with this program?

declared g[0] , used g[17]

wrong number of arguments for foo

‘‘ ab ’’ is not an int

used f as scalar but is array

undeclared variable q

10 is not a character string

Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Semantic Analysis

Table of contents

1 Introduction
Semantic Analysis

2 Name Analysis
Scopes
Data Structures
Visitor Implementation

Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Semantic Analysis

To generate code, the compiler needs to answer many questions
about names:

is x a scalar, an array or a function?

is x declared? Are there names declared but not used?

which declaration of x does each use reference?

about types:

is the expression x∗y+z type-consistent?

in a[i , j ,k], does a have three dimensions?

how many arguments does foo take? What about printf ?

about memory:

where can z be stored? (register, local, global heap, static)

does ∗p reference the result of a malloc()?

do p and q refer to the same memory location?

. . .
Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Scopes
Data Structures
Visitor Implementation

Name Analysis

The property “each identifier needs to be declared before use”
depends on context information.

In theory it is possible to specify this with a context-sensitive
grammar

In practice we define a context-free grammar (CFG) and
identify invalid programs using other mechanisms enforcing
language properties that cannot be expressed with a CFG

In order to check such a property, we need to find the declaration
of each identifier. Additional constraints might exist depending on
the specific language.

Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Scopes
Data Structures
Visitor Implementation

Different languages, different constraints

Example

. . .

vo id main () {
i =3;

}
i n t i ;

. . .

Invalid in C

Valid in Java

Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Scopes
Data Structures
Visitor Implementation

Scopes

Definition

The region where an identifier is visible is referred to as the
identifier’s scope.

This means it is only legal to refer to the identifier within its scope.
Here identifier refers to function or variable name.

In addition, in our language, it is illegal to declare two identifiers
with the same name if the are in the same scope (ignoring nesting).
In our language we have two types of scopes:

File scope (a.k.a. global scope)

Block scope (a.k.a. local scope)

Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Scopes
Data Structures
Visitor Implementation

File scope (global scope)

Any name declared outside any block has file scopes. It is visible
anywhere in the file after its declaration.

i has file scope

i n t i ;
vo id main () {

i = 2 ;
}

File scope

F i l e S c op e ({ i })

Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Scopes
Data Structures
Visitor Implementation

Block scope (local scope)

Any identifier declared within a block is visible only within that
block. Procedure parameter identifiers have block scope, as if they
had been declared inside the block forming the body of the
procedure.

i , j have the same block scope

vo id f oo (i n t i) {
i n t j ;
i = 2 ;
j = 3 ;
}

Block scope

BlockScope ({ i , j })

Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Scopes
Data Structures
Visitor Implementation

Nested scopes

Scopes are nested within each other.

Code

i n t i ;
v o i d main (i n t j) {

i n t k ;
{

i n t l ;
}
{

i n t l ;
i n t m;

}
}

Nested scopes

F i l e S c op e (
{ i }
BlockScope (
{ j , k}
BlockScope (
{ l }

)
BlockScope (
{ l ,m}

)
)

)

Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Scopes
Data Structures
Visitor Implementation

Shadowing occurs when an identifier declared within a given scope
has the same name as an identifier declared in an outer scope. The
outer identifier is said to be shadowed and any use of the identifier
will refer to the one from the inner scope.

Legal example in C

i n t i ;
i n t j ;
vo id main (i n t i) {

i n t j ;
i ;
{

i n t j ;
j ;

}
j ;

}

Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Scopes
Data Structures
Visitor Implementation

Illegal shadowing

Note that in some languages, such as Java, it is illegal to shadow
local variables.

Illegal example in Java

p u b l i c s t a t i c vo id f oo () {
i n t i ;
f o r (i n t i = 0 ; i < 5 ; i++) // i l l e g a l to r e d e c l a r e i

System . out . p r i n t l n (i) ;
}

Making this illegal help prevent potential bugs.

However, Java does allow for shadowing of fields by local
variables (if this was allowed, the introduction of a new field
in a superclass might create problems in the sub-classes)

Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Scopes
Data Structures
Visitor Implementation

Illegal shadowing

In most languages, it is illegal to declare two identifiers with the
same name if the are in the same scope (ignoring nesting). Here
identifier refer to function or variable name.

Illegal example 1 in C

i n t i ;
i n t i ; // i l l e g a l
vo id main (i n t j) {

i n t j ; // i l l e g a l
i n t k ;
i n t k ; // i l l e g a l

}

Illegal example 2 in C

i n t i ;
vo id i () { // i l l e g a l
}

Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Scopes
Data Structures
Visitor Implementation

Name Analysis

In order to perform name analysis, we need to define a few data
structures:

Symbol Table

A symbol table is a data structure that stores for each identifier
information about their declaration.

Symbol

A symbol is a data structure that stores all the necessary
information related to a declared identifier that the compiler must
know.

Scope

A scope is a data structure that stores information about declared
identifiers. Scopes are usually nested.

Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Scopes
Data Structures
Visitor Implementation

Symbols

Symbol classes

abs t rac t c l a s s Symbol {
S t r i n g name ;
boolean i s V a r () { . . . }
boolean i s P r o c () { . . . }

}
c l a s s ProcSymbol extends Symbol {

Procedure p ;
ProcSymbol (Procedure p)
{ t h i s . p = p ; t h i s . name = p . name}

}
c l a s s VarSymbol extends Symbol {

VarDecl vd ;
VarSymbol (VarDecl vd)
{ t h i s . vd = vd ; t h i s . name = vd . va r . name ;}

}

Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Scopes
Data Structures
Visitor Implementation

Scope and Symbol Tables

The symbols are stored in the symbol table within their scope.

Scope class

abs t rac t c l a s s Scope {
Scope ou t e r ;
Map<St r i ng , Symbol> symbolTable ;

Scope (Scope ou t e r) { . . . } ;

Symbol lookup (S t r i n g name) { . . . } ;
Symbol l ookupCu r r en t (S t r i n g name) { . . . } ;

vo id put (Symbol symbol)
{ symbo ls . put (symbol . name , symbol) ; }

}

Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Scopes
Data Structures
Visitor Implementation

Exercise

1 Why are there two lookup methods?

2 Implements the lookup methods.

Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Scopes
Data Structures
Visitor Implementation

Vistor Implementation

We can now write our pass which will analyse names by creating a
visitor which traverses the AST. The goals of the name analysis are
to:

ensure variables and functions are declared before used

ensure variable and function declaration name are unique
within the same scope

save the results of the analysis back in the AST nodes:

a reference to the variable declaration for each variable use
a reference to the procedure declaration for each function call
this information is necessary for the later passes (e.g. type
checking, code generation)

Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Scopes
Data Structures
Visitor Implementation

NameAnalysis visitor : variable declaration

c l a s s NameAnalys i s imp lements ASTVis i tor<Void> {

Scope scope ;
NameAnalys i s (Scopt scope) { t h i s . scope = scope ; } ;

p u b l i c Void v i s i t V a rD e c l (VarDecl vd) {
Symbol s = scope . l ookupCu r r en t (vd . va r . name) ;
i f (s != n u l l)

e r r o r () ;
e l s e

scope . put (new VarSymbol (vd)) ;
r e t u r n n u l l ;

}

Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Scopes
Data Structures
Visitor Implementation

NameAnalysis visitor : block

p u b l i c Void v i s i t B l o c k (Block b) {
Scope o ldScope = scope ;
scope = new Scope (o ldScope) ;
// v i s i t the c h i l d r e n
. . .
s cope = o ldScope ;
r e t u r n n u l l ;

}

Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Scopes
Data Structures
Visitor Implementation

NameAnalysis visitor : variable use

p u b l i c Void v i s i t V a r (Var v) {
Symbol vs = scope . lookup (v . name) ;
i f (v s == n u l l)

e r r o r () ;
e l s e i f (! v s . i sV a r ())

e r r o r () ;
e l s e // e v e r y t h i n g i s f i n e , r e c o r d va r . d e c l .

v . vd = ((VarSymbol) vs) . vd ;
r e t u r n n u l l

}

Not just analysis!

The visitor does more than analysing the AST: it also remembers
the result of the analysis directly in the AST node. Need to do this
for variable uses and function calls.

Christophe Dubach Compiling Techniques

Introduction
Name Analysis

Scopes
Data Structures
Visitor Implementation

Next lecture

Type analysis

Christophe Dubach Compiling Techniques

	Introduction
	Semantic Analysis

	Name Analysis
	Scopes
	Data Structures
	Visitor Implementation

