
Overview
Registers

Instructions

Compiling Techniques
Lecture 10: An Introduction to MIPS assembly

Christophe Dubach / Jose Cano

20 October 2017

Christophe Dubach / Jose Cano Compiling Techniques

Overview
Registers

Instructions

Table of contents

1 Overview

2 Registers

3 Instructions
Arithmetic
Memory
Control Structures
System Calls

Christophe Dubach / Jose Cano Compiling Techniques

Overview
Registers

Instructions

Assembly program template

.data

Data segment: constant and variable definitions go here (including
statically allocated arrays)

format for declarations: name: storage_type value

create storage for variable of specified type with given name
and value

var1: .word 3 # one word of storage with initial value 3

array1: .space 40 # 40 bytes of storage for array1

.text

Text segment: assembly instructions go here

Christophe Dubach / Jose Cano Compiling Techniques

Overview
Registers

Instructions

Components of an assembly program

Category Example
Comment # I am a comment

Assembler directives .data, .asciiz

Operation mnemonic add, addi, lw, bne

Register name $zero, $t3

Address label (declaration) loop1:

Address label (use) loop1

Integer constant 8, -4, 0xA9

Character constant ’h’, ’\t’

String constant "Hello, world\n"

Christophe Dubach / Jose Cano Compiling Techniques

Overview
Registers

Instructions

Hello world example

Description: a simple hello world program

.data

hellostr: .asciiz "Hello , world\n"

.text

li $v0 , 4 # setup print syscall

la $a0$, hellostr # argument to print string

syscall # tell the OS to do the system call

li $v0 , 10 # setup exit syscall

syscall # tell the OS to perform the syscall

Christophe Dubach / Jose Cano Compiling Techniques

Overview
Registers

Instructions

Registers

32 general-purpose registers

register preceded by $ in assembly language

two formats for addressing (name or number: $zero or $0)

holds 32 bits value (= 4 bytes = 1 word)

stack grows from high memory to low memory

Christophe Dubach / Jose Cano Compiling Techniques

Overview
Registers

Instructions

Registers

Register Alternative Description
number name
0 $zero the value 0
1 $at assembler temporary: reserved by the assembler
2-3 $v0-$v1 values: from expression evaluation and function results
4-7 $a0-$a3 arguments: first four parameters for function (no preserved

across function call)
8-15 $t0-$t7 temporaries (not preserved across function calls)
16-23 $s0-$s7 saved temporaries (preserved across function calls)
24-25 $t8-$t9 temporaries: (not preserved across function calls)
26-27 $k0-$k1 reserved for use by the interrupt/trap handler
28 $gp global pointer : base of global data segment
29 $sp stack pointer : points to last location on stack
30 $s8/$fp saved value / frame pointer (preserved across function call)
31 $ra return address

Special Hi and Lo registers (not shown above) holds result of
multiplication and division (see example later)

Christophe Dubach / Jose Cano Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

Arithmetic Instructions

Most use three operands

All operands are registered (no memory access)

All operands are 4 bytes (a word)

Christophe Dubach / Jose Cano Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

Arithmetic Instructions

add $t0 ,$t1 ,$t2

$t0 = $t1 + $t2;

add as signed (2’s complement) integers

sub $t2 ,$t3 ,$t4 # $t2 = $t3 - $t4

addi $t2 ,$t3 , 5 # $t2 = $t3 + 5; "add immediate"

addu $t1 ,$t6 ,$t7 # $t1 = $t6 + $t7; add as unsigned integers

subu $t1 ,$t6 ,$t7 # $t1 = $t6 + $t7; subtract as unsigned integers

mult $t3 ,$t4

multiply 32-bit quantities in $t3 and $t4 , and store 64-bit

result in special registers Lo and Hi: (Hi ,Lo) = $t3 * $t4

div $t5 ,$t6

Lo = $t5 / $t6 (integer quotient)

Hi = $t5 mod $t6 (remainder)

mfhi $t0

move quantity in special register Hi to $t0: $t0 = Hi

mflo $t1

move quantity in special register Lo to $t1: $t1 = Lo

move $t2 ,$t3 # $t2 = $t3

Christophe Dubach / Jose Cano Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

Load / Store Instructions

Memory access only allowed with explicit load and store
instructions (load/store architecture)

All other instructions use register operands

Load

lw register_destination, mem_source

copy a word (4 bytes) at source memory location to
destination register
lb register_destination, mem_source

copy a byte to low-order byte of destination register (sign
extend higher-order bytes)
li register_destination, value

load immediate value into destination register

Christophe Dubach / Jose Cano Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

Load / Store Instructions

Store

sw register_source, mem_destination

store a word (4 bytes) from source register to memory location
sb register_source, mem_destination

store a byte (low-order) from source register to memory
location

Example

.data

var1: .word 23 # declare storage for var1; initial value is 23

.text

lw $t0 , var1 # load contents of mem location into register $t0: $t0 = 23

li $t1 , 5 # $t1 = 5 ("load immediate ")

sw $t1 , var1 # store contents of $t1 into mem: var1 = 5

Christophe Dubach / Jose Cano Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

Indirect and Based Addressing

load address:

la $t0, var1

copy memory address of var1 into register $t0

indirect addressing:

lw $t1, ($t0)

load word at memory address contained in $t0 into $t2
sw $t2, ($t0)

store word in register $t2 into memory at address contained in
$t0

based/indexed addressing (useful for field access in struct):

lw $t2, 4($t0)

load word at memory address ($t0+4) into register $t2
sw $t2, -12($t0)

store content of register $t2 into memory at address ($t0-12)

Christophe Dubach / Jose Cano Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

Indirect and Based Addressing

Example

.data

array1: .space 12 # declare 12 bytes of storage

.text

la $t0 , array1 # load base address of array into $t0

li $t1 , 5 # $t1 = 5 ("load immediate ")

sw $t1 , ($t0) # first array element set to 5

li $t1 , 13 # $t1 = 13

sw $t1 , 4($t0) # second array element set to 13

li $t1 , -7 # $t1 = -7

sw $t1 , 8($t0) # third array element set to -7

Christophe Dubach / Jose Cano Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

Exercise

Write the assembly program corresponding to the following C code:

struct point_t {

int x;

int y;

}

void main() {

struct point_t p;

int arr [12];

p.x = 2;

p.y = 4;

arr[3] = 6;

}

Christophe Dubach / Jose Cano Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

Control structures

Branches:

b target # unconditional branch to target

beq $t0 ,$t1 ,target # branch to target if $t0 = $t1

blt $t0 ,$t1 ,target # branch to target if $t0 < $t1

ble $t0 ,$t1 ,target # branch to target if $t0 <= $t1

bgt $t0 ,$t1 ,target # branch to target if $t0 > $t1

bge $t0 ,$t1 ,target # branch to target if $t0 >= $t1

bne $t0 ,$t1 ,target # branch to target if $t0 <> $t1

All branch instructions use a target label: example

addi $t0 , $zero , 0 # t0 = 0

addi $t1 , $zero , 10 # t1 = 10

loop:

addi $t0 , $t0 , 1 # t0 = t0+1

blt $t0 , $t1 , loop # branch to loop if t0 <t1 (t0 <10)

Christophe Dubach / Jose Cano Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

Control structures

Jumps:

j target

unconditional jump to program label target

jr $t3

jump to address contained in $t3 ("jump register ")

Subroutine (function) call:
jal label # "jump and link"

copy program counter (return address) to register $ra (return
address register)
jump to program instruction at label

jr $ra # "jump register"

jump to return address in $ra (stored by jal instruction)

In case of nested function calls, the return address should be
saved to the stack and restored accordingly.

Christophe Dubach / Jose Cano Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

System Calls

System calls are used to interface with the operating systems. For
instance input/output or dynamic memory allocation.
Using system calls:

1 load the service number in register $v0
2 load argument values in $a0, $a1, . . .
3 issue the syscall instruction
4 retrieve return value if any

Example: printing integer on the console

li $v0 , 1

service 1 is print integer

add $a0 , $t0 , $zero

load desired value into argument register $a0

syscall
Christophe Dubach / Jose Cano Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

System calls tables:

Service $v0 Arguments Result
print integer 1 $a0 = integer to print
print string 4 $a0 = address of null-

terminated string to print
print character 11 $a0 = character to print
read integer 5 $v0 = integer read
read character 12 $v0 = character read
allocate heap
memory

9 $a0 = number of bytes to
allocate

$v0 = address of
allocated memory

Christophe Dubach / Jose Cano Compiling Techniques

Overview
Registers

Instructions

Arithmetic
Memory
Control Structures
System Calls

Next lecture:

Introduction to Code Generation

Christophe Dubach / Jose Cano Compiling Techniques

	Overview
	Registers
	Instructions
	Arithmetic
	Memory
	Control Structures
	System Calls

