RESULTS VISUALISATION

RESULTS VISUALISATION

o At the beginning of this course, the large majority of respondents to the

survey had no experience with visualisation/plotting tools, or found this
challenging.

» Wide range of software suitable for such purposes.

» As always, ease of use is traded for the number of features supported
and quality of end results.

» For CSLP you may use things as simple as charts generated with
spreadsheet tools (LibreOffice Calc, Microsoft Excel, OS X Numbers,
Google Sheets, etc.),

» or work with specialised software/packages/statistical computing
languages (gnuplot, Matlab, matplotlib, R).

RESULTS VISUALISATION

» Like with other things, the visualisation tool is mostly a personal choice.

 Though at times you may be required to use a specific tool
(employer/project request or license constraints).

» If you work collaboratively, open-source, cross-platform portable
solutions are certainly appropriate.

PLOTTING WITHR

e Today I will give a short guide to R, since
1. It meets the aforementioned criteria;

2. You will likely use this tool for other projects where you will need to
process and visualise data sets.

e R isincreasingly popular among data analysts and statisticians.

 Workflow can be simplified with the use of graphical front-ends such as
RStudio (as you type help, partial script execution, exporting images,
etc.).

e As you become more expert, you can combine it with C/Java/Python
code.

https://www.r-project.org/

PLOTTING WITHR

e Once you installed R (already installed on DiCE), you can invoke
different functions through a CLI.

$ R
Type 'demo()' for some demos, 'help()' for on-line help, or
‘help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

>

 Though perhaps more often you will write some scripts.

e Even if using a graphical front-end, you still have the console, which is
handy if you need to install packages.

R PACKAGES

e DIiCE machines should have most packages you would require, but for
your personal installation, you may have to install some manually.

» For instance, you may want to install the ggplot2 package to produce
complex graphics more easily.

e The procedure is pretty straightforward:

Ilggplotzll

» This takes care of all the necessary download, compilation, and
installation for you.

http://had.co.nz/ggplot2/

WRITING A SIMPLE (YET USEFUL)
R SCRIPT

WRITING A SIMPLE SCRIPT

» Say we have some delays you recorded in a file named 'values.dat' and
you want to see if they follow a certain distribution.

» Imagine a file like this

e Where first line contains the name of variable observed.

» We expect the delays stored in this file to follow an Erlang distribution
with shape - and rate i-i/.00.

WRITING A SIMPLE SCRIPT

e First thing we do is to read these values from the file

"values.dat"

e Then obtain an estimate of the Probability Density Function (PDF) for
the values corresponding to the 'delay’ object in the dataset.

e The 'density’ function is implementing a kernel density estimator
(though no need to worry about the details).

WRITING A SIMPLE SCRIPT

» Next we obtain an 'ideal' PDF of an Erlang-2 random variable with rate
r=1/100, Where say we are interested in delays ranging between 0 and 500

seconds.

» Here we are actually drawing from a gamma distribution, but since the
shape is an integer (.-:) gamma and Erlang are equivalent.

WRITING A SIMPLE SCRIPT

 What remains is only to plot the two curves

plot(span, idealDistr, type="1",

col="red", lwd=2,

xlab="Delay [s]", ylab="Probability", main="PDFs")
lines(empiricalDistr, col="blue", lwd=2)

where we plot with lines (of width 2), use red for the 'ideal' PDF and
blue for the empirical distribution, and label the axes accordingly.

e Finally set the legend

legend (370, 0.0035, legend=c("Ideal", "Empirical"),
col=c("red", "blue"), lty=1l:1, lwd=2:2, cex=1l.2)

WRITING A SIMPLE SCRIPT

Putting everything together, the following script...

measurements <- read.delim("values.dat")

empiricalDistr <- density(measurements$delay)

span <- seq.int (0, 500, length.out=500)

idealDistr <- dgamma(span, 2, rate=1/100)

plot(span, idealDistr, type="1", col="red", lwd=2,
xlab="Delay [s]", ylab="Probability", main="PDFs")

lines(empiricalDistr, col="blue", lwd=2)

legend (370, 0.0035, legend=c("Ideal", "Empirical"),
col=c("red", "blue"), lty=1l:1, lwd=2:2, cex=1l.2)

WRITING A SIMPLE SCRIPT

...produces this figure

Probability

0.001 0.002 0.003

0.000

PDFs

—— Ideal
—— Empirical

100

200

Delay [s]

300

PRODUCING FANCIER PLOTS

e Say you want to plot the time evolution of some metric at two different
agents.

e E.g. the throughput of two stations in a Wi-Fi network, when one of
them changes the PHY rate.

e Data stored in a CSV file, first column time (in seconds), 2nd and 3rd
column stations' throughputs (in kb/s).

e The file would look like the following:

10.000, 1.208e+04, 1.205e+04
11.000, 1.196e+04, 1.207e+04
12.000, 1.221e+04, 1.196e+04
13.000, 1.189e+04, 1.230e+04
14.000, 1.188e+04, 1.226e+04

1.189e+04, 1.261e+04

15.000,

PRODUCING FANCIER PLOTS

e First load the libraries needed.

library(ggplot2)
library(reshape2)

» Prepare file path and read the contents of the file.

folder = "results" # location of data files

read from CSV file
filename obtained through concatenation
contents <- read.csv(pasteO(folder, "/throughput.dat"),

header=F)

» Set suggestive names for the objects.

names (contents) <- c("time", "STA 1", "STA 2")

PRODUCING FANCIER PLOTS

e Create an empty data frame and combine with read data.

create empty data frame
mydata <- data.frame()

combine objects
mydata <- rbind(mydata, contents)

» Time logged started at 10s, so make adjustment to display more
elegantly.

adjust time to display
mydata$time <- mydata$time - 10

PRODUCING FANCIER PLOTS

Produce the plot...

myplot <- ggplot(melt(mydata, id="time"),

aes(x=time, y=value/le3)) +

geom line(aes(colour=variable)) +

scale x continuous(limits=c(0,250)) +

scale y continuous(limits=c(0,15)) +

ylab("Throughput [Mb/s]") +

xlab("Time [s]") +

theme bw() +

theme(plot.margin = unit(c(0.5,1,0,0.5), "lines"),
plot.background = element blank(),
legend.title=element blank(),
legend.position="top",
text = element text(size=20)) +

scale color manual(values=c("cadetblue4", "corald4"))

... OK, a lot to take in here! Let's go through this step by step.

USING THE GGPLOT FUNCTION

» First we need to convert data object into a molten data frame, telling the
plotter the variable changing is 'time'.

Iltimell

e Then construct aesthetics mapping, i.e. x and y axes. We want to plot in
Mb/s, so we need to divide throughput values by 1,000.

le3

e Instruct to connect the variables in order specified by x axis, with lines;
allow different colours for each.

USING THE GGPLOT FUNCTION

» Set ranges for the x and y axes, and label these.

scale x continuous(limits=c(0,250)) +
scale y continuous(limits=c(0,15)) +
ylab("Throughput [Mb/s]") +
xlab("Time [s]") +

e Set a simple theme, adjust the margins slightly, no background

theme bw() +
theme(plot.margin = unit(c(0.5,1,0,0.5),
plot.background = element blank(),

"lines"),

USING THE GGPLOT FUNCTION

» No legend title, place the legend at the top, increase font size to improve
readability

legend.title=element blank(),
legend.position="top",
text = element text(size=20)) +

e Finally, set some custom colours

scale color manual(values=c("cadetblued4", "coral4d"))

» And now plot the chart.

plot(myplot)

http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

END RESULT

—STA1—STA 2
15-
D dﬂ%ﬁ $WMﬁﬂM F@Wﬁﬂﬂ ﬂ%”*%N whﬂﬁ%ﬂ
2 10;
S |
| 0
)

0 50 100 150 200 250
Time [s]

BAR PLOTS & ERROR BARS

e Now let's try something more complex.

e Say we want to compare the latency performance of two network
protocols, when a client downloads files of different sizes.

» With each protocol, we download every file and measure the delay over
10 such experiments.

 We are interested in the average and standard deviation of the latency
measured.

BAR PLOTS & ERROR BARS

Files containing these measurements for each protocol will look like this

256kB 00.23
256kB 00.19
512kB 00.52
512kB 00.42

4096kB 03.30
4096kB 04.29

BAR PLOTS & ERROR BARS

e As before, we first extract and label the data

mydata 1 <- read.delim(paste@(folder,
“/latency 1l.dat"), header=F)

mydata 2 <- read.delim(pasteO(folder,
"/latency 2.dat"), header=F)

names (mydata 1) <- c("FILESIZE", "LATENCY")
names(mydata 2) <- c("FILESIZE", "LATENCY")

mydata 1$what = "Protocol 1"
mydata 2%$what = "Protocol 2"

» Then prepare empty data frames to store the average and standard
deviation values of the measured latency

avg lat <- data.frame()
std lat <- data.frame()

BAR PLOTS & ERROR BARS

e Next, subset the data using the different file sizes

for(file in unique(mydata 1$FILESIZE)) {
tmp 1 <- subset(mydata 1, FILESIZE==file)
tmp 2 <- subset(mydata 2, FILESIZE==file)

 Compute the means for each protocol and bind data

avg lat = rbind(avg lat, rbind(c(what="Protocol 1",
FILESIZE=file,
LATENCY=mean (tmp 2$LATENCY)),

c(what="Protocol 2", FILESIZE=file,
LATENCY=mean (tmp 1$LATENCY))))

e and do the same for standard deviations

std lat = rbind(std lat, rbind(c(what="Protocol 1",
FILESIZE=file,
LATENCY=sd (tmp 2$LATENCY)),

c(what="Protocol 2", FILESIZE=file,
LATENCY=sd (tmp_ 1$LATENCY))))

BAR PLOTS & ERROR BARS

e Recall we need molden data frames for ggplot

dd avg lat <- melt(avg lat, id=c("what", "FILESIZE"))
dd std lat <- melt(std lat, id=c("what", "FILESIZE"))

e The error bars should correspond to ,:-. Therefore we need to compute
the boundaries of the error bars.

dd avg lat$ymax <- as.numeric(dd avg lat$value) +
as.numeric(dd std lat$value)

dd avg lat$ymin <- as.numeric(dd avg lat$value) -
as.numeric(dd std lat$value)

» We should now have everything we need for plotting.

BAR PLOTS & ERROR BARS

» We want to plot the average latency with boxes (bar), as a function of the
file size

myplot <- ggplot(dd avg lat, aes(x=as.character(FILESIZE),
y=as.numeric(value))) +
geom bar(aes(fill=what), position
geom bar(aes(fill=what), position
colour="black") +

"dodge", stat="identity") +
"dodge", stat="identity",

e Here we use bar chart geometry; we want to avoid overlap (hence
'dodging' bars side by side),

» Force the height of the bars to the value of the data ('identity’).

e First bars will have a coloured fill, second bars black contours around
these.

BAR PLOTS & ERROR BARS

 We add the error bars next, centring on the boxes, adjusting width of the
ends and line.

geom _errorbar(aes(ymax=ymax, ymin=ymin, fill=what),
position=position dodge(.9), width=0.25, lwd=1) +

e Custom tics on the x axis

scale x discrete(limits=c("256kB", "512kB", "1024kB",
"2048kB", "4096kB")) +

e Labelling the axes

ylab("Download time [s]") + xlab("File size") +

BAR PLOTS & ERROR BARS

» Finally setting the theme, legend position, font size, etc.

theme classic() +
theme(legend.title=element blank(),
legend.position=c(0.15,0.9),
legend.background = element rect(),

text = element text(size=20)) +

e and custom colours.

scale fill manual(values=c("cadetblue", "coral")))

BAR PLOTS & ERROR BARS

The complete call

myplot <- ggplot(dd avg lat, aes(x=as.character(FILESIZE),

y=as.numeric(value))) +

geom bar(aes(fill=what), position

geom bar(aes(fill=what), position
colour="black") +

geom errorbar(aes(ymax=ymax, ymin=ymin, fill=what),
position=position dodge(.9), width=0.25, lwd=1) +

scale x discrete(limits=c("256kB", "512kB", "1024kB",
"2048kB", "4096kB")) +

ylab("Download time [s]") + xlab("File size") +

theme classic() +

theme(legend.title=element blank(), legend.position=c(0.15,0.9),
legend.background = element rect(),
text = element text(size=20)) +

scale fill manual(values=c("cadetblue", "coral"))

"dodge", stat="identity") +
"dodge", stat="identity",

...ET VOILA!

Protocol 1
Protocol 2
30+
,
@
E
s 20+
(4]
O
—
=
(@]
0O 4o
o) e e [T J
256kB 512kB 1024kB 2048kB 4096kB

File size

ADDITIONAL RESOURCES & REMARK

e If you feel R is for you and want to learn how to produce even more
sophisticated charts, lots of tutorials and examples are available on the

R-bloggers web site.

» Everything you need to know about ggplot2 features is explained
here.

 NB: You are not required to produce plots of the results you obtain for
CSLP using R. You can use any tool you like, though R may prove useful
for future projects as well.

https://www.r-bloggers.com/
http://docs.ggplot2.org/0.9.3.1/index.html

PART 3 REQUIREMENTS

PART 3 SUBMISSISON

e Part 3 carries 50% of the total marks

e Deadline: Wed 21 st December, 2016 at 16:00
(unless ITO/year organiser gave you an extension)

» Wise to check again and comply with the University academic
misconduct policy.

e Remember this is an individual project.

» Reusing publicly available code is OK, but clearly mark the parts you did
not author yourself.

http://www.ed.ac.uk/academic-services/students/conduct/academic-misconduct

PART 3 REQUIREMENTS

» By the part 3 deadline you are expected to have:
= A complete and working version of the simulator.

= A short written report (in PDF format) documenting your
implementation and key findings.

e Your code will not be tested for functionality you were expected to have
at Part 2, but will be expected to work on valid input files provided as
command line arguments.

FUNCTIONALITY EXPECTED FOR PART 3

e Correct lorry scheduling, bin service, and route planning;
e Correct summary statistics, in line with output format specification;

» Experimentation support;

Test files non-trivially different from each;

Evidence of reasonable run times and optimisation;

Appropriate indentation and spacing, no dead code;

Evidence of appropriate use of source control.

WRITTEN REPORT

e Do not write an overly lenghty report;

e Avoid putting code; If you really need to explain something non-trivial,
use an appendix;

e Briefly document the architecture of your simulator (you may already
have this by now), your design choices, and testing efforts;

» Briefly discuss experiments performed, results obtained (potentially
accompanied by plots), and insights gained;

 Document any additional features you implemented (extra credit for
these).

QUESTIONS

