
COURSEWORK CLARIFICATIONS & TIPS

Parsing – you may be still developing this, but remember:

If encountering issues with the input file, do not simply output something like
this

or like this

Do tell the user what the problem encountered was, e.g.:

Error: invalid input file.

Error: invalid token found in input file.

Error: Invalid input file provided. Parameter 'stopTime' 
missing. The simulation will terminate.



COURSEWORK CLARIFICATIONS & TIPS

Parsing – you may be still developing this, but remember:

If you did encounter an error, interrupt execution.

Otherwise, if you did parse all the parameters required, but the values of some
do not make much sense, you may continue execution.

However, issue a warning first, e.g.

Warning: 'stopTime' parameter smaller than 'warmUpTime'. 
The simulation will continue.



COURSEWORK CLARIFICATIONS & TIPS

Parsing – you may be still developing this, but remember:

Do not prompt the user for input during execution! That is, something like the
following is not acceptable:

If you do need to stop execution for debugging purposes, while allowing us to
perform automated testing you can work with an optional flag which enables
debugging, e.g.

Press any key to start simulation...

$ ./simulate.sh
Usage: ./simulate.sh <input_filename> [debug=on|off]
 Default option: debug=off
 </input_filename>



COURSEWORK CLARIFICATIONS & TIPS

Alternatively create a development branch, leaving the master always 'testable',
e.g.

will create a branch named 'dev'. You will need to select it (checkout) first, to
make commits to it.

You can then make changes to the development branch and merge with master
when new feature completed.

I will come back to branching later.

$ git branch dev



COURSEWORK CLARIFICATIONS & TIPS

Parsing – you may be still developing this, but remember:

Distinguishing between errors/warning can be at times debatable. For instance

Since you have a list of values after a valid parameter keyword, but the
'experiment' keyword is missing, you may regard this as invalid input and issue
an error.

But you could also ignore the tokens following the first value ('1') and issue a
warning.

...
disposalDistrShape 1 2 3
...



COURSEWORK CLARIFICATIONS & TIPS

If the input file is indeed invalid (or missing) and you are coding in Java, do not
simply throw an exception.

Handle it by returning a short message explaining the problem to
the user.

The 'binServiceTime' is expressed in seconds. No need to expect a float value.
Working with a 16-bit integer is fine.

Some parameters may be given in different order, but do not expect this for area
descriptions. This is valid

This is not:

areaIdx 0 serviceFreq 0.0625 thresholdVal 0.7 noBins 5

areaIdx 0 noBins 5 serviceFreq 0.0625 thresholdVal 0.7



COURSEWORK CLARIFICATIONS & TIPS

Events generation:

Bin disposal events are independent at different bins.

The average disposal rate is wrt. a bin not per area.

Do you need to store all the delays between disposal events at each bin upfront?

Or can you extract new delays from the given distribution once a disposal event
at the target bin was executed?

It may be quite inefficient to store all the events happening throughout a days
long simulation.



COURSEWORK CLARIFICATIONS & TIPS

Bin overflows:

'Exceeded' refers to something strictly greater than.

Threshold exceed != bin overflowed, unless thresholdVal==1 or

new bag disposal caused 
content volume > threshold * bin capacity, and

content volume > bin capacity (think large bag).

Overflow can happen at most once between two services.

If bin not overflowed, add new bag irrespective of volume.

Do not 'partially' service a bin.



THE SCOREBOARD

This is meant only to give you an indication of where you are with the
development of the simulator.

Only functionality required for Part 2 is tested at the moment.

There is no 1-to-1 correspondence between the tests for which you see results on
the scoreboard and the Part 2 evaluation.

Though they will be closely related.

What the marker is testing for at the moment is existing fork, error free
compilation, correct parsing of valid files, generation of valid output, invalid
input detection.



MULTIPLE FILES

Question: Should you spread your implementation across multiple source code
files?

There may be some good reasons to do so:

Increase code reusability

Reduces compilation time

Could help navigating source code faster



MULTIPLE FILES

Not suggesting you should not, but do so for a good reason.

Given the size of this project, you could try to use as few files as possible.

Move type definitions, functions, etc. to separate files when that seems
necessary.



SHOULD I DEVELOP CODE WITH OR WITHOUT AN IDE?

This shouldn't make a difference, but you may have good reasons for choosing
one of the two approaches.

Coding using a plain text editor (e.g. vi, nano)

You can easily code remotely (over ssh) on e.g. a DiCE machine

In some cases you may need to write a makefile yourself (especially if
working with multiple files).



SHOULD I DEVELOP CODE WITH OR WITHOUT AN IDE?

Using IDEs

Nicer keyword highlighting;

Some auto complete braces/brackets/parenthesis;

Some may have integrated help for functions;

Some warn about certain syntax errors as you type;

Perhaps easier if you are not a very experienced programmer;

If you decide to code using an IDE, it's entirely up to you which one you choose
(NetBeans, Eclipse, CodeLite, etc.)



CODE OPTIMISATION



OPTIMISATION

Re-usability can conflict heavily with readability.

Similarly optimised or fast code can conflict with readability.

You are writing a simulator which may have to simulate millions of events.

In order to obtain statistics, it may then have to repeat the simulation
thousands of times.

Optimised code is generally the opposite of reusable code.

It is optimised for its particular assumptions which cannot be violated.



PREMATURE OPTIMISATION

The notion of optimising code before it is required.

The downside is that code becomes less adaptable.

Because the requirements on your optimised piece of code may change, you
may have to throw away your specialised code and all its optimisations.

Note: This does not refer to the requirements of the CSLP.
In a realistic setting they may, but not here.

It is the requirements of a particular portion of your code which may change.



TIMELY OPTIMISATION

So when is the correct time to optimise?

Refactoring is done in between development of new functionality
Recall this makes it easier to test that this process has not changed the
behaviour of your code.

This is also a good time to do some optimisation
You should be in a good position to test that your optimisations have not
negatively impacted correctness.



WHEN TO OPTIMISE?

When you discover that your code is not running fast enough, it's probably wise
to optimise it.

Often this will come towards the end of the project.

It should certainly come after you have something deployable.

Preferably after you have developed and tested some major portion of
functionality.



A PLAUSIBLE STRATEGY

Perform no optimisation until the end of the project once all functionality is
complete and tested.

This is a reasonable approach; however:

During development, you may find that your test suite takes a long time to run.

Even one simple run to test the functionality you are currently developing may
take minutes/hours.

This can slow down development significantly, so it may be appropriate to do
some optimisation at that point.



HOW TO OPTIMISE

The very first thing you need before you could possibly optimise code is a
benchmark.

This can be as simple as timing how long it takes to run your test suite.

O(n2) solutions will beat O(n log n) solutions on sufficiently small inputs, so
your benchmarks must not be too small.



HOW TO OPTIMISE

Once you have a suitable benchmark then you can:

1. Save a local copy of your current code, or branch (I will come back to this
option);

2. Run your benchmark and record the run time;

3. Perform what you think is an optimisation on your source code;

4. Re-run your benchmark & compare the run times;

5. If you successfully improved the performance of your code keep the new
version, otherwise revert changes;

6. Do one optimisation at a time.



HOW TO OPTIMISE

However, bear in mind that you are writing a stochastic simulator
This means each run is different and hence may take a different time to run,

Even if the code has not changed or has changed in a way that does not
affect the run time significantly.

Simply using the same input several times should be enough to reduce or
nullify the effect of this.



PROFILING

Profiling is not the same as benchmarking.

Benchmarking:
determines how quickly your program runs;

is to performance what testing is to correctness.

Profiling:
is used after benchmarking has determined that your program is running
too slowly;

is used to determine which parts of your program are causing it to run
slowly;

is to performance what debugging is to correctness.



BENCHMARKING & PROFILING

Without benchmarking you risk making changes to your program that will lead
to poorer performance.

Without profiling you risk wasting effort optimising a part of code which is
either already fast or rarely executed.

Documenting: Source code comments are a good place to explain why the code
is the way it is.



BRANCHING

source: activegrade.com



BRANCHING

This occurs in software development frequently.

In particular, you aim to add a new feature only to discover that the supporting
code does not support your enhancement.

Hence you need to first improve the supporting code, which may itself require
modification.

Branching is the software solution to this problem, that most other projects do
not have available.

It is easy to copy the current state of a project, work on the copy and then merge
back if the work is successful.



BRANCHING  THE BASIC IDEA

When commencing a unit of work:
1. Begin a branch, this logically copies the current state of the project.

2. The original branch might be called ‘master’ and the new branch ‘feature’.

3. Complete your work on the ‘feature’ branch.

4. When you are happy merge the results back into the ‘master’ branch.



BRANCHING  REASONS

Mid-way through, should you discover that your new feature is ill-conceived,

or, your approach is unsuitable,

You can simply revert back to the master branch and try again.

Of course you can revert commits anyway, but this means you're not entirely
deleting the failed attempt.

You can also concurrently work on several branches and only throw away the
changes you do not want to keep.



BRANCHING

Stay organised!

One approach is to have a new branch for each feature
This has the advantage that multiple features can be worked upon
concurrently.

Usually each feature branch is deleted as soon as it is merged back into
‘master’.

A more lightweight solution is to develop everything on a branch named ‘dev’.

After each commit, merge it back to ‘master’ you then always have a way of
creating a new branch from the previous commit.



BRANCHING

After you created a branch, be sure you selected it, otherwise you are still
making commits to the master.

Example:

This effectively tells git to navigate to the 'dev' branch.

Once the new feature/optimisation is ready, merge back to master.

You will find a more detailed discussion in .

$ git branch dev
$ git checkout dev

$ git checkout master
$ git merge dev

this tutorial

https://www.atlassian.com/git/tutorials/using-branches


FINAL NOTE
There are still a few people who did not fork the CSLP repository and/or given
us read permissions.

There are only two weeks left until the deadline for Part 2.

Remember this carries 50% of the marks – act now!


