
CODE STRUCTURING & CODING STRATEGY

HOW TO STRUCTURE YOUR WORK?

This is for guidance only and I will not go into great detail, to avoid seeing
identically structured solutions.

Part of the practical is structuring it yourself. However, it is likely you will want
at least the following components:

A parser,

A representation of the states of a simulation,

Operations over that state

The simulation algorithm,

Something to handle output,

Something to analyse results,

A test suite.

SOME OBVIOUS DECISIONS

Do you want to parse into some abstract syntax data structure and then convert
that into a representation of the initial state,

Or could you parse directly into the representation of the initial state?

Do you wish to print out events as they occur during the simulation,
Or record them and print them out later?

Do you wish to analyse the simulation events as the simulation proceeds,
Or analyse the events afterwards?

PARSING

You do not necessarily need to start with the parser.

The parser produces some kind of data structure. You could instead start by
hard coding your examples in your source code.

Though the parsing for this project is pretty simple.

Hence you could start with the parser, even if not complete, but remember
your parser is marked at Part 2.

Hard coding data structure instances could prove laborious,

but doing so would ensure your simulator code is not heavily coupled with
your parser code.

SOFTWARE CONSTRUCTION

Software construction is relatively unique in the world of large projects in that it
allows a great deal of back tracking.

Many other forms of projects, such as construction, event planning, and
manufacturing, only allow for backtracking in the design phase.

The design phase consists of building the object virtually (on paper, on a
computer) when back tracking is inexpensive.

Software projects do not produce physical artefacts, so the construction of the
software is mostly the design.

REFACTORING

Refactoring is the process of restructuring code while achieving exactly the
same functionality, but with a better design.

This is powerful, because it allows trying out various designs, rather than
guessing which one is the best.

It allows the programmer to design retrospectively once significant details are
known about the problem at hand.

It allows avoiding the cost of full commitment to a particular solution which,
ultimately, may fail.

MORE ABOUT REFACTORING

Refactoring is a term which encompasses both factoring and defactoring.

Generally the principle is to make sure that code is written exactly once.

We hope for zero duplication.

However, we would also like for our code to be as simple and comprehensible as
possible.

FACTORING AND DEFACTORING

We avoid duplication by writing re-usable code.

Re-usable code is generalised.

Unfortunately, this often means it is more complicated

Factoring is the process of removing common or replaceable units of code,
usually in an attempt to make the code more general.

Defactoring is the opposite process specialising a unit of code usually in an
attempt to make it more comprehensible.

FACTORING EXAMPLE

A very naive but perfectly reasonable bit of code to print out a set of prime
numbers up to a particular limit.

void primes(int limit){
 integer x = 2;
 while (x <= limit){
 boolean prime = true;
 for (i = 2; i < x; i++){
 if (x % 2 == 0){ prime = false; break; }
 }
 if (prime){ System.out.println(x + " is prime"); }
 }
}

FACTORING EXAMPLE

Here we have “factored out” the code to print the prime number to the screen.
This may make it more readable, but the code is not more general.

void print_prime(int x){
 System.out.println(x + " is prime");
}
void primes(int limit){
 x = 2;
 while (x <= limit){
 ... // as before
 if (prime){ print_prime(x); }
 }
}

FACTORING EXAMPLE

To make it more general we have to actually parametrise what we do with the
primes once we have found them.

You can now use different functions to display, store, etc. the prime numbers.

interface PrimeProcessor{
 void process_prime(int x);
}
class PrimePrinter implements PrimeProcessor{
 public void process_prime(int x){
 System.out.println(x + " is prime");
 }
}
void primes(int limit, PrimeProcessor p){
 x = 2;
 while (x <= limit){
 ... // as before
 if (prime){ p.process_prime(x); }
 }
}

FACTORING

We can go further and factor out the testing as well:

interface PrimeTester{
 boolean is_primes(int x);
}
class NaivePrimeTester implements PrimeTester{
 public boolean is_prime(int x){
 for (i = 2; i < x; i++){
 if (x % 2 == 0){ return false; }
 }
 return true;
 }
}
void primes(int limit, PrimeTester t, PrimeProcessor p){
 x = 2;
 while (x <= limit){
 if (t.is_prime(p)){ p.process_prime(x); }
 }
}

FACTORING

Now that testing is factored out, it does not have to be used solely for primes.

interface IntTester{
 boolean property_holds(int x);
}
class NaivePrimeTester implements IntTester{
 public boolean property_holds(int x){
 for (i = 2; i < x; i++){
 if (x % 2 == 0){ return false; }
 }
 return true;
 }
} // Similarly for PrimeProcessor to IntProcessor
void number_seive(int limit, IntTester t, IntProcessor p){
 x = 0;
 while (x <= limit){
 if (t.property_holds(p)){ p.process_integer(x); }
 }
}

FACTORING

Print the numbers:perfect

interface IntTester{
 boolean property_holds(int x);
}
class PerfectTester implements IntTester{
 public boolean property_holds(int x){
 return (sum(factors(x)) == x);
 }
} // Similarly for PerfectProcessor
void number_seive(int limit, IntTester t, IntProcessor p){
 x = 0;
 while (x <= limit){
 if (t.property_holds(p)){ p.process_integer(x); }
 }
}

http://en.wikipedia.org/wiki/Perfect_number

FACTORING

So which version do we prefer? This one:

public abstract class NumberSeive{
 abstract boolean property_holds(int x);
 abstract void process_integer(int x);
 abstract int start_number;
 void number_seive(int limit){
 x = self.start_number;
 while (x <= limit){
 if (self.property_holds(p)){ self.process_integer(x); }
 }}} // Close all the scopes
public class PrimeSeive inherits NumberSeive{
 public boolean property_holds(int x){
 for (i = 2; i < x; i++){
 if (x % 2 == 0){ return false; }
 } return true; }
 void process_integer(int x) { System.out.println (x + " is prime!"); }
 int start_number = 2;
}

FACTORING

Or the original version?

void primes(int limit){
 integer x = 2;
 while (x <= limit){
 boolean prime = true;
 for (i = 2; i < x; i++){
 if (x % 2 == 0){ prime = false; break; }
 }
 if (prime){ System.out.println(x + " is prime"); }
 }
}

FACTORING

Something in between?

LinkedList get_primes(int limit){
 int x = 2; LinkedList results = new LinkedList();
 while (x <= limit){
 boolean prime = true;
 for (i = 2; i < x; i++){
 if (x % 2 == 0){ prime = false; break; }
 }
 if (prime){ results.append(x); }
 }
}
void primes(int limit){
 for x in get_primes(limit){
 System.out.println(x + " is prime");
 }
}

FACTORING

What you should factor depends on the context.

How likely am I to need more number seives?

How likely am I to do something other than print the primes?

Try to find the right re-usability/time trade-off.

DEFACTORING

Numbers such as the number 20 can be factored in different ways
2,10

4,5

2,2,5

If we have the factors 2 and 10, and realise that we want the number 4 included
in the factorisation we can either:

Try to go directly by multiplying one factor and dividing the other, or

Defactor 2 and 10 back into 20, then divide 20 by 4.

DEFACTORING

Similarly, your code is factored in some way.

In order to obtain the factorisation that you desire, you may have to first
defactor some of your code.

This allows you to factor down into the desired components.

This is often easier than trying to short-cut across factorisations.

SIEVE OF ERATOSTHENES

1. Create a list of consecutive integers from 2 to n: (2, 3, ..., n)

2. Initially, let p equal 2, the first prime number

3. Starting from p, count up in increments of p and mark each of these numbers
greater than p itself in the list

These will be multiples of p: 2p, 3p, 4p, etc.; note that some of them may
have already been marked.

4. Find the first number greater than p in the list that is not marked
If there was no such number, stop

Otherwise, let p now equal this number (which is the next prime), and
repeat from step 3

SIEVE OF ERATOSTHENES

You can probably do this via our abstract number sieve class, but likely you don't
want to. The alternative is to defactor back to close to our original version and
then factor the way we want it.

void primes(int limit){
 LinkedList prime_numbers = new LinkedList();
 boolean[] is_prime = new Array(limit, true);
 for (int i = 2; i ‹ Math.sqrt(limit); i++){
 if (is_prime[i]){
 prime_numbers.append(i);
 for (j = i * i; j ‹ limit; j += i){
 is_prime[j] = false;
 }

DEFACTORING

Flexibility is great, but it is generally not without cost.
The cognitive cost associated with understanding the more abstract code.

If the flexibility is not now or unlikely to become required then it might be
worthwhile defactoring.

It is appropriate to explain your reasoning in comments.

REFACTORING SUMMARY

Code should be factored into multiple components.

Refactoring is the process of changing the division of components.

Defactoring can help the process of changing the way the code is factored.

Well factored code will be easier to understand.

Do not update functionality at the same time.

SUGGESTED STRATEGY

Note that this is merely a suggested strategy.

Start with the simplest program possible.

Incrementally add features based on the requirements.

After each feature is added, refactor your code.
This step is important, it helps to avoid the risk of developing an
unmaintainable mess.

Additionally it should be done with the goal of making future feature
implementations easier.

This step includes janitorial work (discussed later).

SUGGESTED STRATEGY

At each stage, you always have something that works.

Although you need not specifically design for later features, you do at least
know of them, and hence can avoid doing anything which will make those
features particularly difficult.

ALTERNATIVE STRATEGY

Design the whole system before you start.

Work out all components and sub-components needed.

Start with the sub-components which have no dependencies.

Complete each sub-component at a time.

Once all the dependencies of a component have been developed, choose that
component to develop.

Finally, put everything together to obtain the entire system, then test the entire
system.

JANITORIAL WORK

Janitorial work consists mainly of the following:

Reformatting,

Commenting,

Changing Names,

Tightening.

JANITORIAL WORK

REFORMATING

Becomes:

There is plenty of software which will do this work for you as well.

void method_name (int x)
{
 return x + 10;
}

void method_name(int x) {
 return x + 10;
}

JANITORIAL WORK

REFORMATTING

Reformatting is entirely superficial.

It is important to consider when you apply this.

This may well conflict with other work performed concurrently.

Reformatting should be largely unnecessary, if you keep your code formatting
correctly in the first place.

More commonly required on group projects.

JANITORIAL WORK

COMMENTING

Writing good comments in your code is essential.

When done as janitorial work this can be particularly useful.
You can comment on the stuff that is not obvious even to yourself as you
read it.

The important thing to comment is not what or how but why.

Try not to have redundant/obvious information in your comments:

// 'x' is the first integer argument
int leastCommonMultiple(int x, int y)

JANITORIAL WORK

COMMENTING

Ultra bad:

Better:

// increment x
x += 1;

// Since we now have an extra element to consider
// the count must be incremented
x += 1;

JANITORIAL WORK

CHANGING NAMES

The previous example used x as a variable name.

Unless it really is the x-axis of a graph, choose a better name.

This is of course better to do the first time around.

However as with commenting, unclear code can often be more obvious to its
author upon later reading it.

JANITORIAL WORK

TIGHTENING

Tightened to become:

void main(...){
 run_simulation();
}

void main(...){
 try{
 run_simulation();
 } catch (FileNotFoundException e) {
 // Explain to the user ..
 }
}

JANITORIAL WORK

TIGHTENING

For some developers this is not janitorial work, since it actually changes in a
non-superficial way the function of the code.

However, similar to other forms, it is often caused by being unable to think of
every aspect involved when writing new code.

JANITORIAL WORK

Most of this work is work that arguably could have been done right the first time
around when the code was developed.

However, when developing new code, you have limited cognitive capacity.

You cannot think of everything when you develop new code. Janitorial work is
your time to rectify the minor stuff you forgot.

Better than trying to get it right first time is making sure you later review your
code.

JANITORIAL WORK

Remember, refactoring is the process of changing code without changing its
functionality, whilst improving design.

Strictly speaking janitorial work is not refactoring.
It should not change the function of the code,

(Tightening might, but generally for exceptional input only.)

but neither does it make the design any better.

In common with refactoring you should not perform janitorial work on pre-
existing code whilst developing new code.

COMMON APPROACH

There is a common approach to developing applications
1. Start with the main method

2. Write some code, for example to parse the input

3. Write (or update) a test input file

4. Run your current application

5. See if the output is what you expect

6. Go back to step 2.

DO NOT START WITH MAIN

A better place to start is with a test suite.

This doesn't have to mean you cannot start coding.

Write a couple of test inputs.

Create a skeleton “do nothing” parse function.

Create an entry point which simply calls your parse function on your test inputs
(all of them).

Watch them fail.

DO NOT START WITH MAIN

DataStructure parse_method(String input_string){
 return null;
}
void run_test(input){
 try { result = parse_method(input);
 if (result == null){
 System.out.println("Test failed by producing null");
 } else { System.out.println("Test passed"); }
 }
 catch (Exception e){
 System.out.println("Test raised an exception!");
 }}
test_input_one = "...";
test_input_two = "...";
void test_main(){
 run_test(test_input_one);
 run_test(test_input_two);
 ...
}

DO NOT START WITH MAIN

1. Code until those tests are green
Including possibly refactoring

2. Without forgetting to commit to git as appropriate

3. Consider new functionality
Write a method that tests for that new functionality

Watch it fail, whether by raising an exception or simply not producing the
results required

Return to step 1.

4. You can write your main method any time you like
It should be very simple, as it simply calls all of your fully tested
functionality

DO NOT START WITH MAIN

Any time you run your code and examine the results, you should be examining
output of tests

If you are examining the output of your program ask yourself:
Why am I examining this output by hand and not automatically?

If I fix whatever is strange about the output can I be certain that I will never
have to fix this again?

Of course sometimes you need to examine the output of your program to
determine why it is failing a test. This is just semantics (it is still the output of
some test)

SUMMARY

Everything your program outputs should be tested.

Intermediate results that you might not output can still be tested as well.

Run all of your tests, all of the time
It may take too long to run them all for each development run,

In which case, run them all before and after each commit.

