GIT RECAP

• Check status since last commit:

\$ git status

• Stage changes/add new files:

```
$ git add file_name
```

• Record changes (advisable for new units of code):

\$ git commit -m "Relevant message here"

• Push to remote repository (so we can see your code):

\$ git push origin master

• Lists all your commits:

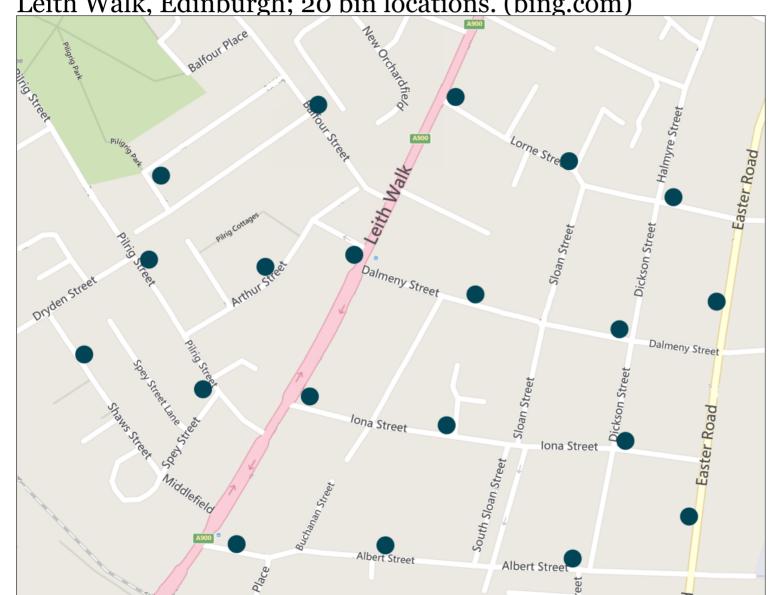
\$ git log

SIMULATION COMPONENTS SERVICE AREAS & ROUTE PLANNING

SERVICE AREAS

- We need an abstract representation of roads layout and bin locations for the different areas.
- We need to model the roads between different locations and the time required to travel these.
- We need to account for the fact that some streets only allow one way traffic.

EXAMPLE

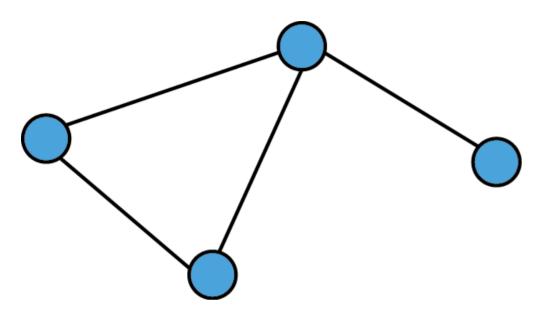


Leith Walk, Edinburgh; 20 bin locations. (bing.com)

GRAPH REPRESENTATION

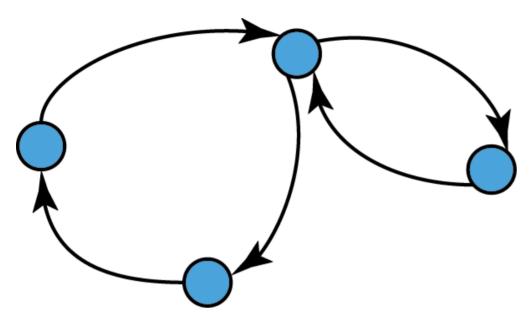
- In mathematical terms such a collection of bin locations interconnected with street segments can be represented through a graph.
- A graph *G* = (*V*,*E*) comprises a set of vertices *V* that represent objects (bin locations/depot) and *E* edges that connect different pairs of vertices (links/street segments).
- Graphs can be *directed* or *undirected*.

UNDIRECTED GRAPHS



• Edges have no orientation, i.e. they are unordered pairs of vertices. That is there is a symmetry relation between nodes and thus (a,b) = (b,a).

DIRECTED GRAPHS



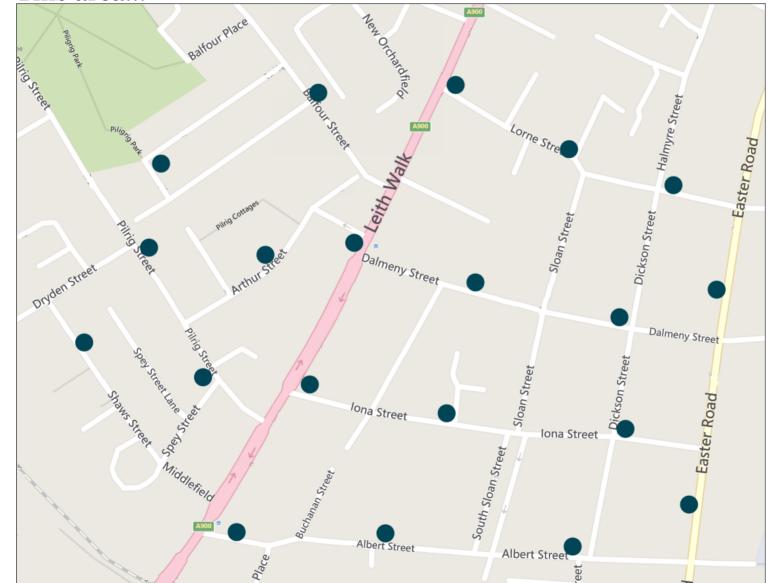
- Edges have a direction associated with them and they are called *arcs* or directed edges.
- Formally, they are *ordered* pairs of vertices,
 i.e. (a,b) ≠ (b,a) if a ≠ b.

GRAPH REPRESENTATION IN YOUR SIMULATORS

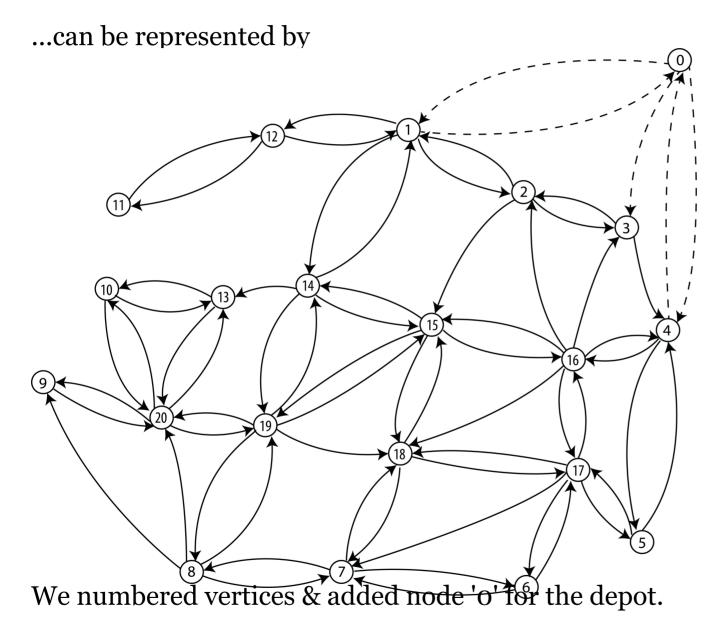
- For our simulations we will consider *directed* graph representations of the service network.
- This will increase complexity, but is more realistic.

BACK TO THE EXAMPLE

This area...



CORRESPONDING GRAPH

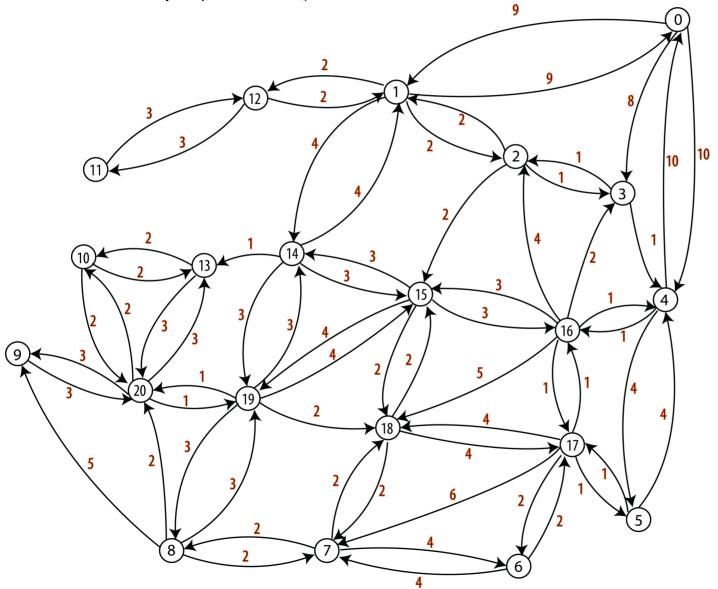


WEIGHTED GRAPH

- We also need to model the distances between bin locations.
- We will use a *weighted graph* representation, where a number (weight) is associated to each arc.
- In our case weights will represent the average travel duration between two locations (vertices) in one direction, expressed in minutes.

WEIGHTED GRAPH

For our example, this may be



INPUT

- For each area, graph representation of bin locations and distances between them will be given in the input script (file) in *matrix* form.
- We will consider the lorry depot as location 0. For a service area with *N* locations, an *N x N* matrix will be specified.
- The **roadsLayout** keyword will precede the matrix.
- Where there is no arc in the graph between two vertices we will use a -1 value in the matrix.

FOR THE PREVIOUS EXAMPLE

	0	1	2	3	4	5	•••	19	20
0	0	9	-1	8	10		••••	-1	-1
1	9	0	2	-1	-1	-1		-1	-1
2	-1	2	0	1	-1	-1		-1	-1
3	-1	-1	1	0	1	-1		-1	-1
4	10	-1	-1	1	0	4	• • •	-1	-1
5	-1	-1	-1	-1	4	0	•••	-1	-1
•	•	•	•	•	•	•		•	•
•	•	•	•	•	•	•		•	•
•	•	•	•	•	•	•		•	•
19	-1	-1	-1	-1	-1	-1	•••	0	1
20	-1	-1	-1	-1	-1	-1	• • •	1	0

*Note that the matrix is not symmetric.

ROUTE PLANNING

- In each area the lorry is schedule at fixed intervals.
- The occupancy thresholds are used to decide which bins need to be visited.
- There are lorry weight and volume constraints that you may account for at the start when planning.
- Equally, you may decide on the fly, i.e. when lorry capacity exceeded.
- Naturally there are efficiency implications here. You need to chose the approach and explain why you did that.
- This is not something to argue for/against. The purpose is for you to think critically about different approaches.

ROUTE PLANNING

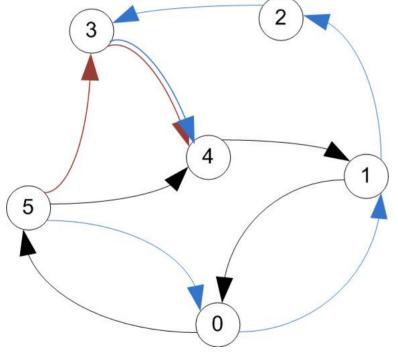
- Your goal is to compute shortest routes that service all bins exceeding occupancy thresholds at the minimum cost in terms of time.
- Remember all routes are circular, i.e. they begin and end at the depot.
- Some bins along a route may not need service.
- Thus it may be appropriate to work with an equivalent graph where vertices that do not require to be visited are isolated and equivalent arc weights are introduced.
- Sometimes it may be more efficient to travel multiple times through the same location, even if the route previously serviced bins that required that.

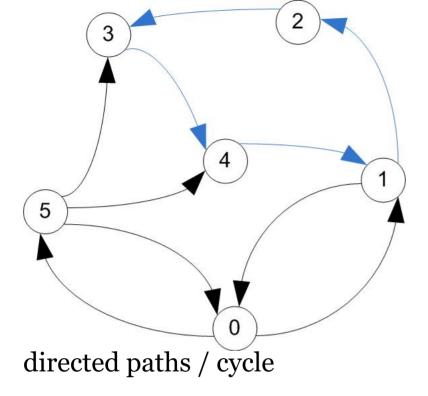
THE (MORE) CHALLENGING PART

- How to partition the service areas and find (almost) optimal routes that visit all vertices that require so with minimum cost?
- This is entirely up to you, but I will discuss some useful aspects next.
- You must justify your choice in the final report and comment appropriately the simulator code.
- You may wish to implement more than one algorithm.

USEFUL TERMINOLOGY

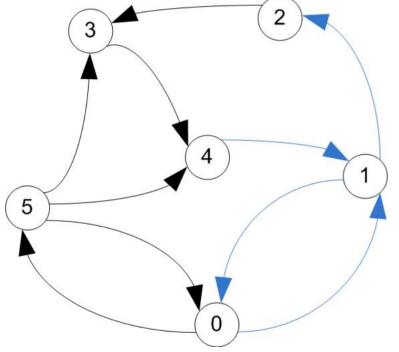
- A *walk* is a sequence of arcs connecting a sequence of vertices in a graph.
- A *directed path* is a walk that does not include any vertex twice, with all arcs in the same direction.
- A *cycle* is a path that starts & ends at the same vertex.

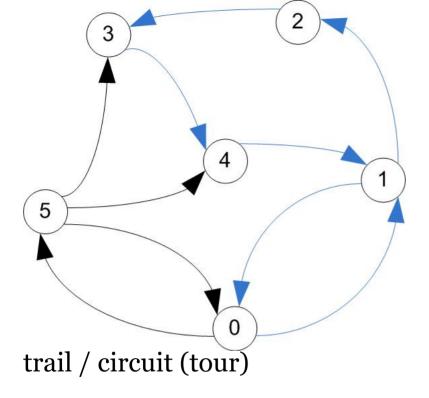




USEFUL TERMINOLOGY

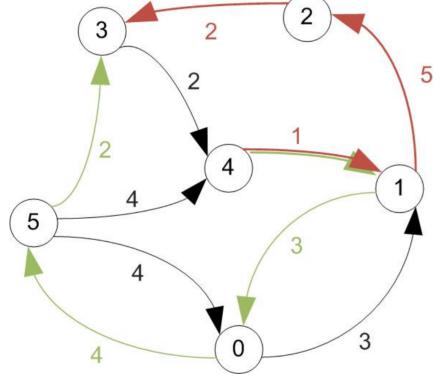
- A *trail* is a walk that does not include any arc twice.
- A trail may include a vertex twice, as long as it comes and leaves on different arcs.
- A *circuit* is a trail that starts & ends at the same vertex





SHORTEST PATHS

- There may be multiple paths that connect two vertices in a directed graph.
- In a *weighted* graph the shortest path between two vertices is that for which the sum of the arc costs (weights) is the smallest.



SHORTEST PATHS

- There are several algorithms you can use to find the shortest paths on a given service network.
- A non-exhaustive list includes
 - Dijkstra's algorithm (single source),
 - Floyd-Warshall algorithm (all pairs),
 - Bellman-Ford algorithm (single source).
- Each of these have different complexities, which depend on the number of vertices and/or arcs.
- The size and structure of the graph will impact on the execution time.

- A single execution finds the lengths of the shortest paths between **all** pairs of vertices.
- The standard version does not record the sequence of vertices on each shortest path.
- The reason for this is the memory cost associated with large graphs.
- We will see however that paths can be reconstructed with simple modifications, without storing the end-to-end vertex sequences.

- Complexity is *O*(*N*³), where *N* is the number of vertices in the graph. The core idea:
- Consider $d_{i,j,k}$ to be the shortest path from *i* to *j* obtained using intermediary vertices only from a set {1,2,...,k}.
- Next, find $d_{i,j,k+1}$ (i.e. with nodes in {1,2,...,k+1}).
 - This could be $d_{i,j,k+1} = d_{i,j,k}$ or
 - A path from vertex *i* to *k*+1 concatenated with a path from vertex *k*+1 to *j*.

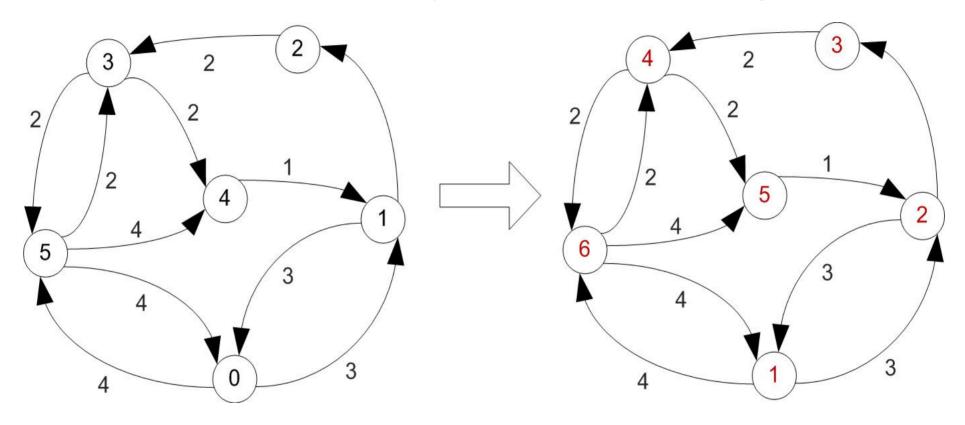
• Then we can compute all the shortest paths recursively as

 $d_{i,j,k+1} = \min(d_{i,j,k}, d_{i,k+1,k} + d_{k+1,j,k}).$

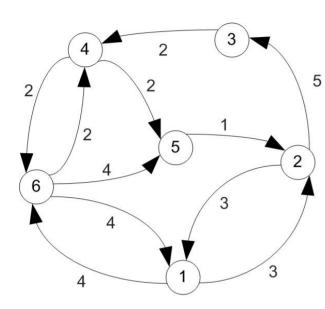
- Initialise $d_{i,j,0} = w_{i,j}$ (i.e. start form arc costs).
- Remember that in your case the absence of an arc between vertices is represented as a -1 value, so you will need to pay attention when you compute the minimum.

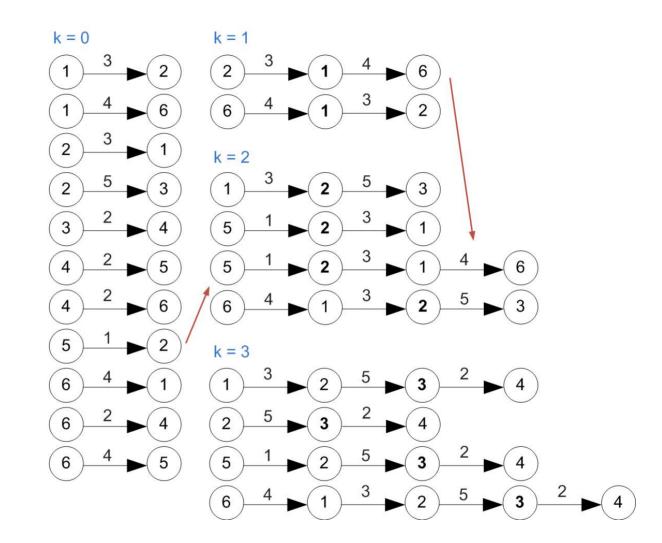
EXAMPLE

First let's increase vertex indexes by one, since we were starting at 0.

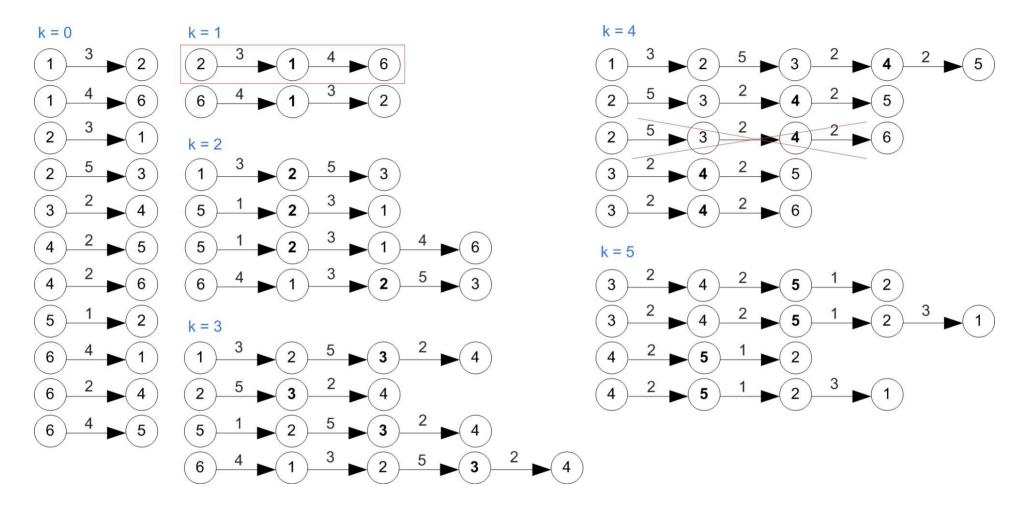


EXAMPLE

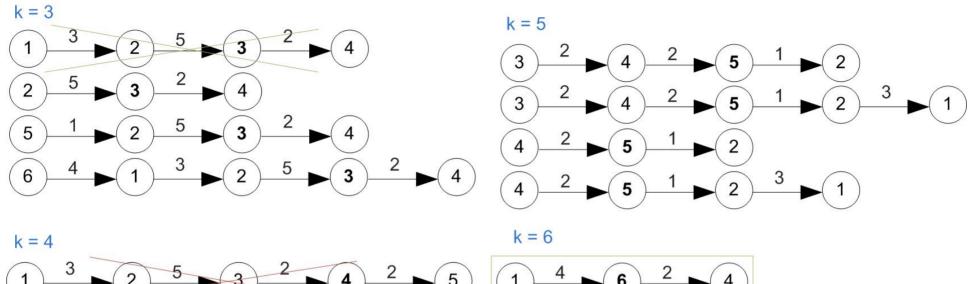




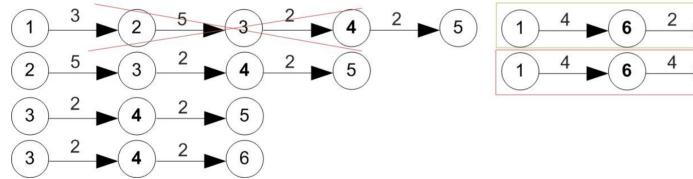
EXAMPLE (CONT'D)



EXAMPLE (CONT'D)



5



All shortest paths found at this step.

PSEUDOCODE

```
Denote d the N × N array of shortest path lengths.
Initialise all elements in d with inf.
For i = 1 to N
For j = 1 to N
d[i][j] ← w[i][j] // assign weights of existing arcs;
For k = 1 to N
For i = 1 to N
For j = 1 to N
If d[i][j] ← d[i][k] + d[k][j]
d[i][j] ← d[i][k] + d[k][j]
End If
```

- This will give you the lengths of the shortest paths between each pair of vertices, but not the entire path.
- You do not actually need to store all the paths, but you would want to be able to reconstruct them easily.
- The standard approach is to compute the shortest path tree for each node, i.e. the spanning trees rooted at each vertex and having the minimal distance to each other node.

PSEUDOCODE

```
Denote d, nh the N × N arrays of shortest path lengths and
respectively the next hop of each vertex.
For i = 1 to N
For j = 1 to N
d[i][j] ← w[i][j] // assign weights of existing arcs;
nh[i][j] ← j
For k = 1 to N
For i = 1 to N
For j = 1 to N
If d[i][j] > d[i][k] + d[k][j]
d[i][j] ← d[i][k] + d[k][j]
nh[i][j] ← nh[j][k]
End If
```

RECONSTRUCTING THE PATHS

To retrieve the sequence of vertices on the shortest path between nodes *i* and *j*, simply run a routine like the following.

path ← i
While i != j
 i ← nh[i][j]
 append i to path
EndWhile

FINDING OPTIMAL ROUTES GIVEN A SET OF USER REQUIREMENTS

- Finding shortest paths between different bin locations is only one component of route planning.
- The problem you are trying to solve is a flavour of the Vehicle Routing Problem (VRP). This is a known *hard* problem.
- Simply put, an optimal solution may not be found in polynomial time and the complexity increases significantly with the number of vertices.

HEURISTIC ALGORITHMS

- Heuristics work well for finding solutions to hard problems in many cases.
- Solutions may not be always optimal, but good enough.
- Work relatively fast.
- When the number of vertices is small, a 'brute force' approach could be feasible.
- Guaranteed to find a solution (if there exists one), and this will be optimal.

CLARIFICATIONS

- 1. If returning to depot and having to immediately service other bins in the same schedule, should I check the occupancy status of all bins again?
 - No. This was not explicitly discussed in the handout, and can be debatable. For this exercise, check all bins at the beginning of a schedule, and plan according to their status even if performing multiple trips.
- 2. If visiting some bin locations on a path between two bins requiring service, should I output all that information?
 - No. This is useful to check your implementation is correct, but takes up memory.

CHOOSING ROUTE PLANNING ALGORITHMS

- You have complete freedom to choose what heuristic you implement, but
- make sure you document your choice and discuss its implication on system's performance in your report.
- It is likely that you will need to compute shortest paths.
- Again, you can choose any algorithm for this task, e.g. Floyd-Warshall, Dijkstra, etc., but explain your choice.
- You can implement multiple solutions, as some may not work for any graph or will perform poorly.
- More about route planning next time.

ASSIGNMENT, PART 1

- Not mandatory, zero weighted (just for feedback)
- Short proposal document outlining planned simulator.
- You should be able to explain plans for:
 - 1. Handling command line arguments;
 - 2. Parsing and validation of input scripts;
 - 3. Generation, scheduling, and execution of events;
 - 4. Graph manipulation/route planning algorithms;
 - 5. Statistics collection;
 - 6. Experimentation support and results visualisation;
 - 7. Code testing.

ASSIGNMENT, PART 1

- No code will be checked.
- Have created 'doc' folder inside repository, copy 'proposal.pdf' inside, git push.

\$ cd doc \$ git add proposal.pdf \$ git commit -m 'Added proposal document' \$ git push

• Deadline today, 7 Oct at 16:00.

