
GIT RECAP



Check status since last commit:

Stage changes/add new files:

Record changes (advisable for new units of code):

Push to remote repository (so we can see your
code):

Lists all your commits:

$ git status

$ git add file_name

$ git commit -m "Relevant message here"

$ git push origin master

$ git log



SIMULATION COMPONENTS

SERVICE AREAS & ROUTE PLANNING



SERVICE AREAS

We need an abstract representation of roads layout and bin locations for the
different areas.

We need to model the roads between different locations and the time required
to travel these.

We need to account for the fact that some streets only allow one way traffic.



EXAMPLE

Leith Walk, Edinburgh; 20 bin locations. (bing.com)





GRAPH REPRESENTATION

In mathematical terms such a collection of bin locations interconnected with
street segments can be represented through a graph.

A graph G = (V,E) comprises a set of vertices V that represent objects (bin
locations/depot) and E edges that connect different pairs of vertices
(links/street segments).

Graphs can be directed or undirected.



UNDIRECTED GRAPHS

Edges have no orientation, i.e. they are unordered pairs of vertices. That is there
is a symmetry relation between nodes and thus (a,b) = (b,a).



DIRECTED GRAPHS

Edges have a direction associated with them and they are called arcs or directed
edges.

Formally, they are ordered pairs of vertices, 
i.e. (a,b) ≠ (b,a) if a ≠ b.



GRAPH REPRESENTATION IN YOUR SIMULATORS

For our simulations we will consider directed graph representations of the
service network.

This will increase complexity, but is more realistic.



BACK TO THE EXAMPLE

This area...





CORRESPONDING GRAPH

...can be represented by

We numbered vertices & added node '0' for the depot.



WEIGHTED GRAPH

We also need to model the distances between bin locations.

We will use a weighted graph representation, where a number (weight) is
associated to each arc.

In our case weights will represent the average travel duration between two
locations (vertices) in one direction, expressed in minutes.



WEIGHTED GRAPH

For our example, this may be





INPUT

For each area, graph representation of bin locations and distances between
them will be given in the input script (file) in matrix form.

We will consider the lorry depot as location 0. For a service area with N
locations, an N x N matrix will be specified.

The roadsLayout keyword will precede the matrix.

Where there is no arc in the graph between two vertices we will use a -1 value in
the matrix.



FOR THE PREVIOUS EXAMPLE

*Note that the matrix is not symmetric.

    0     1     2     3     4     5   ...   19    20
   ---------------------------------------------------
 0| 0     9    -1     8    10    -1   ...   -1    -1
 1| 9     0     2    -1    -1    -1   ...   -1    -1
 2|-1    2     0     1    -1    -1   ...   -1    -1
 3|-1    -1     1     0     1    -1   ...   -1    -1
 4|10    -1    -1     1     0     4   ...   -1    -1
 5|-1    -1    -1    -1     4     0   ...   -1    -1
 .| .     .     .     .     .     .          .     .
 .| .     .     .     .     .     .          .     .
 .| .     .     .     .     .     .          .     .
19|-1    -1    -1    -1    -1    -1   ...    0     1
20|-1    -1    -1    -1    -1    -1   ...    1     0



ROUTE PLANNING

In each area the lorry is schedule at fixed intervals.

The occupancy thresholds are used to decide which bins need to be visited.

There are lorry weight and volume constraints that you may account for at the
start when planning.

Equally, you may decide on the fly, i.e. when lorry capacity exceeded.

Naturally there are efficiency implications here. You need to chose the approach
and explain why you did that.

This is not something to argue for/against. The purpose is for you to think
critically about different approaches.



ROUTE PLANNING

Your goal is to compute shortest routes that service all bins exceeding
occupancy thresholds at the minimum cost in terms of time.

Remember all routes are circular, i.e. they begin and end at the depot.

Some bins along a route may not need service.

Thus it may be appropriate to work with an equivalent graph where vertices that
do not require to be visited are isolated and equivalent arc weights are
introduced.

Sometimes it may be more efficient to travel multiple times through the same
location, even if the route previously serviced bins that required that.



THE (MORE) CHALLENGING PART

How to partition the service areas and find (almost) optimal routes that visit all
vertices that require so with minimum cost?

This is entirely up to you, but I will discuss some useful aspects next.

You must justify your choice in the final report and comment appropriately the
simulator code.

You may wish to implement more than one algorithm.



USEFUL TERMINOLOGY

A walk is a sequence of arcs connecting a sequence of vertices in a graph.

A directed path is a walk that does not include any vertex twice, with all arcs in
the same direction.

A cycle is a path that starts & ends at the same vertex.



directed paths / cycle



USEFUL TERMINOLOGY

A trail is a walk that does not include any arc twice.

A trail may include a vertex twice, as long as it comes and leaves on different
arcs.

A circuit is a trail that starts & ends at the same vertex



trail / circuit (tour)



SHORTEST PATHS

There may be multiple paths that connect two vertices in a directed graph.

In a weighted graph the shortest path between two vertices is that for which the
sum of the arc costs (weights) is the smallest.



SHORTEST PATHS

There are several algorithms you can use to find the shortest paths on a given
service network.

A non-exhaustive list includes

Dijkstra's algorithm (single source),

Floyd-Warshall algorithm (all pairs),

Bellman-Ford algorithm (single source).

Each of these have different complexities, which depend on the number of
vertices and/or arcs.

The size and structure of the graph will impact on the execution time.



FLOYD–WARSHALL ALGORITHM

A single execution finds the lengths of the shortest paths between all pairs of
vertices.

The standard version does not record the sequence of vertices on each shortest
path.

The reason for this is the memory cost associated with large graphs.

We will see however that paths can be reconstructed with simple modifications,
without storing the end-to-end vertex sequences.



FLOYD–WARSHALL ALGORITHM

Complexity is O(N3), where N is the number of vertices in the graph.

The core idea:

Consider di,j,k to be the shortest path from i to j obtained using intermediary
vertices only from a set {1,2,...,k}.

Next, find di,j,k+1 (i.e. with nodes in {1,2,...k+1}).

This could be di,j,k+1 = di,j,k or

A path from vertex i to k+1 concatenated with a path from vertex k+1 to j.



FLOYD–WARSHALL ALGORITHM

Then we can compute all the shortest paths recursively as

di,j,k+1 = min(di,j,k, di,k+1,k + dk+1,j,k).

Initialise di,j,0 = wi,j (i.e. start form arc costs).

Remember that in your case the absence of an arc between vertices is
represented as a -1 value, so you will need to pay attention when you compute
the minimum.



EXAMPLE

First let's increase vertex indexes by one, since we were starting at 0.



EXAMPLE



EXAMPLE (CONT'D)



EXAMPLE (CONT'D)

All shortest paths found at this step.



PSEUDOCODE
Denote d the N × N array of shortest path lengths.
Initialise all elements in d with inf.

For i = 1 to N
   For j = 1 to N
     d[i][j] ← w[i][j]   // assign weights of existing arcs;
   
For k = 1 to N
   For i = 1 to N
       For j = 1 to N
         If d[i][j] > d[i][k] + d[k][j] 
             d[i][j] ← d[i][k] + d[k][j]
         End If



FLOYD–WARSHALL ALGORITHM

This will give you the lengths of the shortest paths between each pair of vertices,
but not the entire path.

You do not actually need to store all the paths, but you would want to be able to
reconstruct them easily.

The standard approach is to compute the shortest path tree for each node, i.e.
the spanning trees rooted at each vertex and having the minimal distance to
each other node.



PSEUDOCODE
Denote d, nh the N × N arrays of shortest path lengths and 
respectively the next hop of each vertex.

For i = 1 to N
   For j = 1 to N
     d[i][j] ← w[i][j]   // assign weights of existing arcs;
     nh[i][j] ← j
   
For k = 1 to N
   For i = 1 to N
       For j = 1 to N
         If d[i][j] > d[i][k] + d[k][j] 
             d[i][j] ← d[i][k] + d[k][j]
      nh[i][j] ← nh[j][k]
         End If



RECONSTRUCTING THE PATHS

To retrieve the sequence of vertices on the shortest path between nodes i and j,
simply run a routine like the following.
   path ← i
   While i != j
     i ← nh[i][j]
     append i to path
   EndWhile



FINDING OPTIMAL ROUTES GIVEN A SET OF USER
REQUIREMENTS

Finding shortest paths between different bin locations is only one component of
route planning.

The problem you are trying to solve is a flavour of the Vehicle Routing Problem
(VRP). This is a known hard problem.

Simply put, an optimal solution may not be found in polynomial time and the
complexity increases significantly with the number of vertices.



HEURISTIC ALGORITHMS

Heuristics work well for finding solutions to hard problems in many cases.

Solutions may not be always optimal, but good enough.

Work relatively fast.

When the number of vertices is small, a 'brute force' approach could be feasible.

Guaranteed to find a solution (if there exists one), and this will be optimal.



CLARIFICATIONS

1. If returning to depot and having to immediately service other bins in the same
schedule, should I check the occupancy status of all bins again?

No. This was not explicitly discussed in the handout, and can be debatable.
For this exercise, check all bins at the beginning of a schedule, and plan
according to their status even if performing multiple trips.

2. If visiting some bin locations on a path between two bins requiring service,
should I output all that information?

No. This is useful to check your implementation is correct, but takes up
memory.



CHOOSING ROUTE PLANNING ALGORITHMS

You have complete freedom to choose what heuristic you implement, but

make sure you document your choice and discuss its implication on system’s
performance in your report.

It is likely that you will need to compute shortest paths.

Again, you can choose any algorithm for this task, e.g. Floyd-Warshall, Dijkstra,
etc., but explain your choice.

You can implement multiple solutions, as some may not work for any graph or
will perform poorly.

More about route planning next time.



ASSIGNMENT, PART 1

Not mandatory, zero weighted (just for feedback)

Short proposal document outlining planned simulator.

You should be able to explain plans for:

1. Handling command line arguments;

2. Parsing and validation of input scripts;

3. Generation, scheduling, and execution of events;

4. Graph manipulation/route planning algorithms;

5. Statistics collection;

6. Experimentation support and results visualisation;

7. Code testing.



ASSIGNMENT, PART 1

No code will be checked.

Have created 'doc' folder inside repository, copy 'proposal.pdf' inside, git push.

Deadline today, 7 Oct at 16:00.

$ cd doc
$ git add proposal.pdf
$ git commit -m ’Added proposal document’
$ git push



QUESTIONS?


