
29/09/2016, 00:51Computer Science Large Practical

Page 45 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

COMPUTER SCIENCE LARGE PRACTICAL

29/09/2016, 00:51Computer Science Large Practical

Page 46 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

SURVEY RESULTS

Approx. 1/5 of class responded; statistically significant?

The majority of you have substantial experience in Java, and all have
at least some basic experience in Python.

Naturally, Java is the preferred choice for CSLP.

That's fine; just make sure you can work comfortably in other
languages in the long run.

Nearly half of you never wrote Bash scrips

I will explain some Bash scripting concepts today; link to
comprehensive tutorial on the course web page.

29/09/2016, 00:51Computer Science Large Practical

Page 47 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

SURVEY RESULTS (II)

Almost 1/2 of respondents never used git.

Link to quick guide on course web page;
I will give a summary today.

To cover code reusability and optimisation concepts.

Graph theory: 2/3 unfamiliar with shortest path/graph traversal
algorithms.

Statistics: 2/3 can only compute basic statistics (e.g. mean) or have no
knowledge.

29/09/2016, 00:51Computer Science Large Practical

Page 48 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

SURVEY RESULTS (III)

Results visualisation: major gap!

Training somewhat out of scope of these lectures, but will try to
cover some basics at the end;

Guides to various tools already on course web page.

Topics you want covered:

Version control, Bash, graph theory, code optimisation, statistics
→ all planned;

Results plotting → time permitting;

Music (!) → Not the right course, but will try to put out a (highly
subjective!) Spotify playlist for coding.

29/09/2016, 00:51Computer Science Large Practical

Page 49 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

29/09/2016, 00:51Computer Science Large Practical

Page 50 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

THE SIMULATOR

29/09/2016, 00:51Computer Science Large Practical

Page 51 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

DEFINITIONS

In the requirements I have stated that your simulator will be a:
stochastic,

discrete event,

discrete time

simulator.

Let's see what each of these terms means.

29/09/2016, 00:51Computer Science Large Practical

Page 52 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

STOCHASTICITY

A stochastic process is one whose state evolves “non-
deterministically”, i.e. the next state is determined according to a
probability distribution.

This means a stochastic simulator may produce slightly different
results when run repeatedly with the same input.

Therefore it is appropriate to compute certain statistics to characterise
the behaviour of the simulated system.

Remember, these are statistics about the model:
You hope that the real system exhibits behaviour with similar
statistics.

29/09/2016, 00:51Computer Science Large Practical

Page 53 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

DISCRETE EVENTS

Discrete events happen at a particular time and mark a change of state
in the system.

This means discrete-event simulators do not track system dynamics
continuously, i.e. an event either takes place or it does not.

There is no fine-grained time slicing of the states, i.e.

Generally a state could be encoded as an integer.

Usually it is encoded as a set of integers, possibly coded as different
data types.

Discrete-event simulations run faster than continuous ones.

29/09/2016, 00:51Computer Science Large Practical

Page 54 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

DISCRETE VS CONTINUOUS STATES

When working with discrete events, it is common to consider that
states are also discrete.

Example:

29/09/2016, 00:51Computer Science Large Practical

Page 55 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

DISCRETE TIME

Discrete time simulations operate with a discrete number of points:
Seconds, Minutes, Hours, Days, etc.

These can also be logical time points:
Moves in a board game,

Communications in a protocol.

Your task is to write a discrete time simulator.

Events will occur with second level granularity.

29/09/2016, 00:51Computer Science Large Practical

Page 56 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

THE ERLANG-K DISTRIBUTION

The probability distribution gives the probability of the different
possible values of a random variable.

The Erlang-k distribution is the distribution of the sum of k
independent exponential variables with mean , where is
the rate parameter.

An exponential distribution describes the time between events in a
Poisson process.

The time X between two events follows exponential distribution if
the prob. that an event occurs during a certain time interval is
proportional to its length.

μ = 1 / λ λ

29/09/2016, 00:51Computer Science Large Practical

Page 57 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

THE ERLANG DISTRIBUTION

Special case of Gamma distribution (Gamma allows k real)

Mean ; that is if something occurs at rate , then we can
expect to wait time units on average to see each occurrence.

Applications: telephone traffic modelling, queuing systems,
biomathematics, etc.

μ = k / λ λ
k / λ

29/09/2016, 00:51Computer Science Large Practical

Page 58 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

THE ERLANG DISTRIBUTION

29/09/2016, 00:51Computer Science Large Practical

Page 59 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

The probability density function (PDF) is given by:

Describes the relative likelihood that an event with rate occurs at
time .

f(x , k , λ) = λ kxk − 1e− λx

(k − 1) ! , ∀x , λ ≥ 0

λ
x

29/09/2016, 00:51Computer Science Large Practical

Page 60 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

THE ERLANG DISTRIBUTION

29/09/2016, 00:51Computer Science Large Practical

Page 61 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

The cumulative distribution function (CDF) is given by:

F(x , k , λ) = 1 −
k − 1

∑
n = 0

1
n !e

− λx(λx)n .

29/09/2016, 00:51Computer Science Large Practical

Page 62 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

THE ERLANG DISTRIBUTION

29/09/2016, 00:51Computer Science Large Practical

Page 63 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

So if something happens at a rate of 0.5 per unit of time, and the
shape of the distribution is 2, then the probability that we will observe
it occurring within 1 time unit is:

F(1, 2, 0.5) = 1 − (e− 0.5 × 1 + e− 0.5 × 1 × 0.5) = 0.09

29/09/2016, 00:51Computer Science Large Practical

Page 64 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

EXERCISE

What is the probability that a random variable is less than its expected
value, if has an Erlang distribution with rate and shape ?

The expected value is:

X
X λ k = 1

E[X] = k
λ

= 1
k

29/09/2016, 00:51Computer Science Large Practical

Page 65 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

EXERCISE

We need to compute using the distribution function:P (X ≤ E [X])

P(X ≤ E[X]) = P(X ≤ 1 / λ)

= F(x, k , λ)

= 1 − e
− λ ∗ 1

λ

= 1 − 1
e

29/09/2016, 00:51Computer Science Large Practical

Page 66 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

29/09/2016, 00:51Computer Science Large Practical

Page 67 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

HOW DO WE SAMPLE FROM A DISTRIBUTION?

INVERSE TRANSFORM METHOD

Let be a RV with continuous and increasing distribution function .
Denote the inverse by .

Let be a random variable uniformly distributed on the unit interval
(0, 1).

Then can be generated by .

X F
F− 1

U

X X = F− 1(U)

29/09/2016, 00:51Computer Science Large Practical

Page 68 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

SAMPLING FROM AN ERLANG DISTRIBUTION

If we use an Erlang CDF for , then we effectively sample from that
distribution by

F

X ≈
k

∑
i = 1

− 1
λ

ln(Ui) = − 1
λ

ln
k

∏
i = 1

Ui

29/09/2016, 00:51Computer Science Large Practical

Page 69 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

DRAWING UNFORMLY DISTRIBUTED NUMBERS

You will probably do this in Java

Remember you will need to feed that into a logarithm.

If using other languages, careful how generator is seeded.

 import java.util.Random;

 ...

 Random r = new Random(); // Uses time in ms as seed

 ...

 double d = r.nextDouble(); // draws between 0 (inclusive!)
 // and 1 (exclusive)

29/09/2016, 00:51Computer Science Large Practical

Page 70 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

WRITING BASH SCRIPTS

29/09/2016, 00:51Computer Science Large Practical

Page 71 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

WHAT'S BASH

Command line interface for working with Unix-type systems (default
on Linux, Mac OS).

You can work interactively, i.e. write commands one at the time to the
prompt, press ENTER ...

or write scripts that execute multiple commands for you → great if you
want to schedule jobs, test code, parse files.

A script is nothing but a text file where you write a sequence of system
commands.

29/09/2016, 00:51Computer Science Large Practical

Page 72 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

BASH SCRIPTING

Make sure you made the script executable, e.g.

Bash scripts typically start with a line

to let the system know this is a Bash script (you may alternatively
work in Perl or others).

 $ editor test.sh
 $ chmod +x test.sh

 #!/bin/bash

29/09/2016, 00:51Computer Science Large Practical

Page 73 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

29/09/2016, 00:51Computer Science Large Practical

Page 74 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

BASH SCRIPTING

29/09/2016, 00:51Computer Science Large Practical

Page 75 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

Scripts work pretty much like any other program, so can take
arguments; you can easily check how many were given, or display
them

Running produces:

 ...
 echo "Number of arguments $#"

 if [[$# > 0]] ; then
 echo "First argument $1"
 else
 echo "No arguments given"
 fi

 $./test.sh param
 Number of arguments: 1

29/09/2016, 00:51Computer Science Large Practical

Page 76 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

BASH SCRIPTING

A couple of things happened in this example:

echo used to print to standard output;

the $ character preceded arguments (same for variables);

$# used to retrieve the number of arguments passed;

Used an if statement to check if number of arguments was no-zero; it
wasn't so $1 was identifying the first;

IMPORTANT: Careful about the spaces; Bash is very picky when it
comes to writing conditionals;

To launch a script put ./ before script name.

29/09/2016, 00:51Computer Science Large Practical

Page 77 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

SCRIPTING YOUR APPLICATION

Your program must take as argument an input script (this is THE
input containing all the simulation parameters; not to be confused
with the Bash script!)

The Bash script will take the name of the input and pass it down to
your executable file.

This in turn must be able to handle command line arguments.

Bash script snippet:

 ...
 java Simulator $1

29/09/2016, 00:51Computer Science Large Practical

Page 78 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

29/09/2016, 00:51Computer Science Large Practical

Page 79 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

SCRIPTING YOUR APPLICATION

Java code:

Executing script:

class Simulator{
 public static void main(String args[]){
 System.out.println("Arguments passed:");
 for (String s: args) {
 System.out.println(s);
 }
 }
}

29/09/2016, 00:51Computer Science Large Practical

Page 80 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

 $./test.sh basic_input
 Arguments passed:
 basic_input

29/09/2016, 00:51Computer Science Large Practical

Page 81 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

DESIGN CHOICES

There are a few things you need to decide whether to implement
inside the Bash script or inside your Java/C/Python/other code.

This includes checking if arguments have been passed, displaying
usage information, checking if the file exists when a file is expected as
argument, etc.

This is entirely your choice.

You may later write more sophisticated scripts to run experiments on
multiple files through a single command.

Bash works nicely with AWK for text processing (parsing your
output).

29/09/2016, 00:51Computer Science Large Practical

Page 82 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

SOURCE CODE CONTROL

29/09/2016, 00:51Computer Science Large Practical

Page 83 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

SOURCE CODE CONTROL

For this project must git for version control and the Bitbucket
platform.

This is somewhat realistic

Any project you join will likely already have some form of source
code control set up which you will have to learn to use rather than
any system you might already be familiar with

See for detailed documentation.the git homepage

http://git-scm.org/

29/09/2016, 00:51Computer Science Large Practical

Page 84 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

SOURCE CODE CONTROL

The practical is not looking for you to become an expert in git;

You will not need to be able to perform complicated branches or
merges;

This is, after all, an individual practical

What is key, is that your commits are appropriate:
Small frequent commits of single units of work;

Clear, coherent and unique commit messages.

29/09/2016, 00:51Computer Science Large Practical

Page 85 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

GETTING STARTED

By now I assume everyone has forked the skeleton CSLP-16-17
repository and granted read permissions to the marker and me.

You can start with a simple README file to plan and document your
work (use any text editor you wish).

 $ cd simulator
 $ editor README.md
 $ git add README.md
 $ git commit -m "Initial commit including a README"
 $ git push origin master

29/09/2016, 00:51Computer Science Large Practical

Page 86 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

THE MAIN POINT

After each portion of work, commit to the repository what you have
done.

Everything you have done since your last commit, is not recorded.

You can see what has changed since your last commit, with the status
and diff commands:

$ git status
On branch master
nothing to commit (working directory clean)

29/09/2016, 00:51Computer Science Large Practical

Page 87 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

STAGING AND COMMITTING

When you commit, you do not have to record all of your recent
changes. Only changes which have been staged will be recorded

You stage those changes with the git add command.

Here a file has been modified but not staged

$ editor README.md
$ git status
On branch master
Changed but not updated:
(use "git add ‹file›..." to update what will be committed)
(use "git checkout -- ‹file›..." to discard changes in working directory)
#
modified: README.md
#
no changes added to commit (use "git add" and/or "git commit -a")

29/09/2016, 00:51Computer Science Large Practical

Page 88 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

29/09/2016, 00:51Computer Science Large Practical

Page 89 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

UNRECORDED AND UNSTAGED CHANGES

A git diff at this point will tell you the changes made that have not
been committed or staged

$ git diff
diff --git a/README.md b/README.md
index 9039fda..eb8a1a2 100644
--- a/README.md
+++ b/README.md
@@ -1 +1,2 @@
 This is a stochastic simulator.
+It is a discrete event/state, discrete time simulator.

29/09/2016, 00:51Computer Science Large Practical

Page 90 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

TO ADD IS TO STAGE

If you stage the modified file and then ask for the status you are told
that there are staged changes waiting to be committed.

To stage the changes in a file use git add

$ git add README.md
$ git status
On branch master
Changes to be committed:
(use "git reset HEAD ‹file›..." to unstage)
#
modified: README.md
#

29/09/2016, 00:51Computer Science Large Practical

Page 91 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

VIEWING STAGED CHANGES

At this point git diff is empty because there are no changes that
are not either committed or staged.

Adding --staged will show differences which have been staged but
not committed.

$ git diff # outputs nothing
$ git diff --staged
diff --git a/README.md b/README.md
index 9039fda..eb8a1a2 100644
--- a/README.md
+++ b/README.md
@@ -1 +1,2 @@
 This is a stochastic simulator.
+It is a discrete event/state, discrete time simulator.

29/09/2016, 00:51Computer Science Large Practical

Page 92 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

NEW FILES

Creating a new file causes git to notice there is a file which is not yet
tracked by the repository.

At this point it is treated equivalently to an unstaged/ uncommitted
change.

$ editor mycode.mylang
$ git status
On branch master
Changes to be committed:
(use "git reset HEAD ‹file›..." to unstage)
#
modified: README.md
#
Untracked files:
(use "git add ‹file›..." to include in what will be committed)
#
mycode.mylang

29/09/2016, 00:51Computer Science Large Practical

Page 93 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

29/09/2016, 00:51Computer Science Large Practical

Page 94 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

NEW FILES

git add is also used to tell git to start tracking a new file.

Once done, the creation is treated exactly as if you were modifying an
existing file.

The addition of the file is now treated as a staged but uncommitted
change.

$ git add mycode.mylang
On branch master
Changes to be committed:
(use "git reset HEAD ‹file›..." to unstage)
#
modified: README.md
new file: mycode.mylang
#

29/09/2016, 00:51Computer Science Large Practical

Page 95 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

29/09/2016, 00:51Computer Science Large Practical

Page 96 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

COMMITTING

Once you have staged all the changes you wish to record, use git
commit to record them.

Give a useful message to the commit.

$ git commit -m "Added more to the readme and started the implementation"
[master a3a0ed9] Added more to the readme and started the implementation
 2 files changed, 2 insertions(+), 0 deletions(-)
 create mode 100644 mycode.mylang

29/09/2016, 00:51Computer Science Large Practical

Page 97 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

PUSHING

Your changes are now committed to your local working copy.

You must also send those changes to the remote Bitbucket repository,
otherwise the marker/I will not be able to see the updates.

$ git push origin master

29/09/2016, 00:51Computer Science Large Practical

Page 98 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

A CLEAN REPOSITORY FEELS GOOD

After a commit, you can take the status, in this case there are no
changes

In general though there might be some if you did not stage all of your
changes

$ git status
On branch master
nothing to commit (working directory clean)

29/09/2016, 00:51Computer Science Large Practical

Page 99 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

FINALLY GIT LOG

The git log command lists all your commits and their messages

$ git log
commit a3a0ed90bc90e601aca8cc9736827fdd05c97f8d
Author: Name ‹author email›
Date: Wed 28 Sep 09:15:32 BST 2016

 Added more to the readme and started the implementation

commit 22de604267645e0485afa7202dd601d7c64c857c
Author: Name ‹author email›
Date: Wed 28 Sep 09:15:32 BST 2016

 Initial commit

29/09/2016, 00:51Computer Science Large Practical

Page 100 of 100http://www.inf.ed.ac.uk/teaching/courses/cslp/slides-16-17/index.html#/55

MORE ON THE WEB

Clearly this was a very short introduction

More can be found at the git book online at:

And countless other websites

http://git-scm.com/documentation

http://git-scm.com/documentation

