
Computer Science Large Practical
2016–2017

Dr Paul Patras
School of Informatics

Issued on: Monday 19th September, 2016

The CSLP coursework handout is structured as follows:

Coursework Description 2
1 Introduction . 2
2 Requirements . 3

2.1 Problem Domain . 3
2.2 Simulation Outline . 4
2.3 Simulation Components . 4
2.4 Command-line Arguments and Bash Script 6
2.5 Input Formatting . 7
2.6 Output Formatting . 9

3 Frequently Asked Questions . 14
4 Getting Started . 14

Part 1 17
1 Introduction . 17
2 Description . 17
3 Submission & Deadline . 18
4 Frequently Asked Questions . 18

Part 2 19
1 Introduction . 19
2 Assessment . 19
3 Submission & Deadline . 20
4 Frequently Asked Questions . 20

Part 3 22
1 Introduction . 22
2 Assessment . 22
3 Additional Credit . 23
4 Submission & Deadline . 23
5 Frequently Asked Questions . 24

1

1 Introduction

The requirement for the Computer Science Large Practical is to develop a command-line ap-
plication, the purpose of which is to execute stochastic simulations of the bin collection process
in a “smart” city. This may help city councils obtain insights into how waste management
operations can be improved. To develop the simulator you may use any programming language
you are most familiar with, as long as your code will compile and run on DiCE.

— ♦ —

Stochastic simulation is an important tool in many fields such as physics, medicine, computer
networking, logistics, etc. and is particularly useful to understand complicated processes. Unlike
deterministic simulations, stochastic simulations with the same input may produce different
outputs. This is due to the fact that some events are intrinsically random.

— ♦ —

Different to previous software development assignments you may have had, this practical
will expose you to the design and implementation of a more complex system that incorporates
realistic constraints specific to large processes. Although a set of requirements is given below,
some of these are intentionally incomplete, to allow you the choice of implementation methodol-
ogy. As this is a relatively large task, your source code must be clean, commented and reusable.
This is an individual assignment and thus code sharing is not permitted.

— ♦ —

At the end of this course, you are expected to produce a written report that explains the
key building blocks of your design, discusses the results of the analyses you performed with
different inputs, and summarises your most important findings. These can be accompanied by
graphs plotted based on the numerical output of your simulations. There should be evidence
that your implementation has been thoroughly tested, and you must also submit input files you
have generated yourself. Take time to understand if the produced output is sensible, i.e. the
numerical values obtained would make sense in a real setting.

It is essential that you read and implement carefully the requirements of the
assignment. In particular, submissions that do not accept correctly formatted input or pro-
duce output with incorrect format will lose marks, since your code will be put through
automated testing.

— ♦ —

In what follows the requirements of your application are detailed, including input formatting,
the expected application behaviour, and the format of the output. There are three deadlines
associated with this coursework. The first part is a formative assessment, for feedback only.
As such it is not mandatory that you submit something, but you are highly encouraged to do
so. This is an opportunity for you to submit a short proposal document that outlines early on
the structure and key design choices you plan to make in developing the simulator. This will
enable you to obtain feedback prior to submitting the part 2, which is a summative assessment,
worth 50% the overall assessment. The report and code you submit for the third deadline weight
additional 50% of the final mark. Further details are given in parts 1–3.

2

2 Requirements

In this section the requirements of the application you must submit are discussed.

2.1 Problem Domain

To be able to simulate a real system, first it is required to construct a model that captures the
most important aspects of the system that will be studied. Not all the features of a real system
may be relevant to a specific problem. The challenge is to identify the important elements to
be modelled and omit others to reduce complexity, while still obtaining information that helps
understanding the system’s behaviour.

Different inputs can be given to a well designed simulator to obtain estimates of different
parameters of interest. Such simulation-based studies are quicker and significantly cheaper than
approaches based on extensive measurements of the real system. In addition, simulations allow
to investigate exceptional scenarios that are foreseeable and likely problematic, but for which a
real data set is not yet available.

Our focus is on the bin collection process in a city. We are interested in a smart city scenario
where community bins are equipped with sensors that indicate their current occupancy. Such
deployments are expected to be rolled out in densely populated cities in order to improve the
scheduling and route planning for the lorries that dispose of community waste. The City of
Edinburgh Council is currently trialling such a scheme.

Traditional collection strategies widely used today suffer from two major drawbacks. First,
lorries are scheduled periodically at fixed intervals and always follow the same routes. As such,
they often make unnecessary frequent trips and sometimes take lengthy routes, while many
bins are far from exceeding their capacity. This increases the operational cost as well as the
operation’s carbon footprint. Second, user daily demand often varies significantly and bins can
overflow much earlier than scheduled pick-ups. This triggers health hazards, degrades the city
landscape, and incurs additional cleaning costs for city councils.

In this practical we will build a simulator of a proposed system in which the bins have occu-
pancy sensors that indicate the volume and weight of the waste they store. Such measurements
can be used to assist scheduling collections and tackle the aforementioned issues. More precisely,
we will investigate the efficiency of the waste management process in terms of weight collected
per time unit when different service intervals and bin occupancy thresholds are used. We will
consider each lorry has a specified capacity in terms of maximum volume and weight it can
carry, and is assigned a single service area. In each area road layouts and the distances between
collection points are known. Upon each schedule, the decision of whether or not to visit and
empty a bin will be made based on configurable occupancy thresholds. The route taken by each
lorry is planned accordingly at the start of a service and is not updated while that lorry is in
service. Routes begin and end at the depot. One can infer that small thresholds can potentially
lead to longer journeys and lesser operation efficiency, but ensure cleaner streets. On the other
hand using large thresholds can prove more cost efficient, but may lead to a larger average
number of bin overflowing per day, which is another metric we wish to estimate. The simulator
will further allow us to understand whether a system is under provisioned, e.g. an area may be
too large for a single lorry to service effectively.

3

2.2 Simulation Outline

The underlying simulation algorithm is fairly straightforward and is outlined below.

time ← 0
while time ≤ max time do

determine the set of events that may occur after the current state
delay ← choose a delay based on the nearest event
time ← time + delay
modify the state of the system based on the current event

end while

A couple of clarifications with respect to the above pseudo-code are appropriate. The set of
possible events include (i) a rubbish bag was disposed of in a bin, (ii) the occupancy threshold
of a bin was exceeded, (iii) a bin overflowed, (iv) a bin was emptied, (v) a lorry was emptied,
and (vi) a lorry arrived/departed form a location (bin or depot).

Users will dispose of rubbish bags at time intervals sampled from an Erlang distribution
with known shape k and rate λ, which will be given as input parameters. An Erlang-k dis-
tribution is effectively the distribution of the sum of k independent exponential variables with
mean µ = 1/λ. You can draw from an exponential distribution with mean µ, by computing
−µ · log(rand(0.0, 1.0)), where rand(0.0, 1.0) returns a random number between 0.0 and 1.0 (ex-
clusive). It follows that the mean delay between two bag disposal events is k/λ. We will consider
bag disposal events to be independent of each other and identically distributed (i.i.d.). That is
a disposal event at a given bin does not depend on previous disposal events at the same or other
bins. We will consider bin service events to be deterministic. That is lorries are scheduled at
fixed time intervals.

When determining the set of events that may occur after the current state, each of these will
have an associated delay. To advance the simulation, you will first need to find the closest one,
i.e. the one with the smallest delay. Then you will update the simulation time with this delay,
execute the corresponding event and update the system states accordingly.

This procedure is repeated until max time expires.

2.3 Simulation Components

Your simulations must include the following elements:

• Users. At any bin, we consider users dispose of waste bags at time intervals that follow an
Erlang-k distribution with the rate and shape given as an input parameters. We assume
a bag is of fixed volume (in cubic meters), given as input. A bag’s weight (in kilograms)
is a random value, uniformly distributed between a lower and an upper bound, which are
also input parameters.

• Bins. All bins have a fixed volume that is specified as an input parameter. We assume
bins do not have maximum weight limitations, but we consider such limits on the waste
bags disposed (as above). We consider bins are equipped with sensors that indicate their
current occupancy as a fraction of their maximum volume. Sensors also track the weight
of the current contents. In addition, you should account for the event that a bin has
’overflowed’. Since the system relies on bin sensors, such events can only be tracked at
most once between two bin service instances. It is also acceptable to assume the occupancy

4

of a bin may exceed capacity, when it becomes full after the disposal of one bag. Again,
for any bin this can happen at most once between two service instances.

• Lorries. Lorries are scheduled periodically at fixed intervals and their daily frequency
is given as input. Lorries have fixed capacity both in terms of volume and weight and
these values are input parameters. On the other hand, upon service a lorry compresses the
contents of a bin to half its original volume. We will consider a bin is serviced (emptied)
in constant time (expressed in seconds), irrespective of the load of a particular bin being
emptied. When at depot we will consider the time required to empty a lorry is also fixed
and this is five times as long as the bin service time.

• Service Areas. We will assume a city divided into multiple service areas, each comprising
a specified number of bins. For this practical we will assume the number of bins in an area
can be represented as a 16-bit integer value, i.e. the maximum number is 65,535. Each
service area is assigned a single lorry. The locations of the bins, the road layout, and the
time it takes to drive between neighbouring bins (expressed in minutes) are also given. We
will use a directed graph representation to model this, as shown in the example illustrated
in Figure 1. The total number of bins in each area and the graph representation of the
distances between them (arc costs) will be provided as an input in matrix form. We thus
account for both one-way and two-way streets.

Figure 1: Example scenario with a single service area and the corresponding graph model. The
vertices represent bin locations, the arcs represent the roads between two adjacent bins and the
arc costs the duration (in minutes) required to travel between them.

• Route Planning. At every schedule, an occupancy threshold will be used to decide which
bins need to be serviced. This threshold is a given input parameter based on which you
must compute the appropriate route a lorry must take within an area. Note that all routes
are circular, i.e. they must start and end at the origin (the depot).
There are several important aspects here. First, there may not be a direct link between
all bins that must be visited. Thus, when computing a path, you may have to keep
track of the intermediary arcs between vertices where the occupancy threshold was not
exceeded and adjacent ones where this has happened. Second, you must compute optimal
routes that visit all bins requiring service and minimum costs. How you implement this
is entirely your choice. For instance you may choose to run shortest path algorithms such
as Johnson–Diskstra, Floyd–Warshall, etc. and combine these with heuristics that ensure
paths start at ends at the depot. The latter is generally known to be difficult as the

5

optimal solution cannot be found in polynomial time. There are however several heuristic
algorithms that work well in finding a solution most of the time. Two such approaches
that are easy to implement are the “Nearest Neighbour” and “Sorted Edge” algorithms.
Exploring different solutions is appropriate.
Note that when e.g. a small number of vertices need to be visited, it is often more efficient
to travel multiple times through the same location, even if the route previously serviced
a bin there. Further, for small areas, even a brute-force approach that computes all the
possible routes and selects the one with the small cost may be appropriate.
Thus when planning the collection route, you are free to choose any existing heuristic or
implement your own algorithm, but you are expected to document your choice and discuss
its implication on system’s performance in your written report.
Finally, if a lorry cannot service in a single trip all the bins whose occupancy exceeds the
predefined threshold, you may have to perform this task in multiple steps. A lorry cannot
receive an updated route from the depot while in service, if e.g. a bin’s occupancy threshold
was reached after the lorry’s departure. The occupancy of some bins may increase as a
lorry traverses a planned route and as a consequence the lorry may not be able to service
all assigned bins due to capacity constraints. Should this happen, you must compute the
shortest path from the current bin to the depot, return on that path and immediately
restart the service procedure (including new route planning). If a lorry misses a schedule
due to a lengthy previous journey, you should schedule right away. Note that such a
situation may perpetuate in a cascade fashion.

At the start of the simulation you must accommodate a “warm-up” period to eliminate
transient effects and ensure the statistics you collect are representative for steady state operation.
The warm-up duration will be given as an input parameter. At start time all bins are considered
empty and lorries stationed at the depot (location 0). Waste disposal and collection processes
can fire off at any time, as long as they do so according to the timing parameters specified in
the input.

From the description of the components you should be able to identify the key requirements
for the simulator you will develop. When implementing these, you are expected to include
comments in your code that explain these requirements, as well as the design choices you made.

2.4 Command-line Arguments and Bash Script

The application you will develop is to be executed at the system console and should accept
command-line arguments. It is mandatory that one argument is the name of the input script
that describes your simulation. You can optionally add other parameters, e.g. for logging
purposes or to allow disabling detailed output when repeating the simulations with different
values of a certain input.

To allow you to develop the simulator in the programming language of your choice, while
ensuring your code can be marked through automated testing, you will have to modify a Bash
script that launches your application. A skeleton script named simulate.sh will be given. You
must ensure this script is updated such that it launches your application correctly with one
or more command line arguments. As such, running your code at the console will be done as
follows:

$./simulate.sh <input file name> [OPTIONS]

When your simulator is run without arguments, you must display usage information.

6

The output of your simulations should be printed to the system standard output (stdout).
The input and output formatting is specified next.

2.5 Input Formatting

Your input file will contain a set of global parameters, including lorry volume, maximum lorry
load, bin service duration, bin volume, rate and shape of the distribution of rubbish bag disposal
events, rubbish bag volume, and minimum and maximum bag weight limits. Then we define the
number of areas. Each area will have specific parameters such as the waste service frequency, the
occupancy threshold that triggers collection, the number of bins, and the graph representation
of the bin locations with the distances between them, where the first location is considered to
be the depot. Except for the roads layout, each object will be described in one line of input.
The graph corresponding to an area will be given in matrix form.

Input Specification

The input parameters will be given in the input script according to the following specification:

lorryVolume <uint8 t>
lorryMaxLoad <uint16 t>
binServiceTime <uint16 t>
binVolume <float>
disposalDistrRate <float>
disposalDistrShape <uint8 t>
bagVolume <float>
bagWeightMin <float>
bagWeightMax <float>
noAreas <uint8 t>
areaIdx <uint8 t> serviceFreq <float> thresholdVal <float> noBins <uint16 t>
roadsLayout
0 <int8 t> <int8 t> ... <int8 t>
<int8 t> 0 <int8 t> ... <int8 t>
...

...
...

...
...

<int8 t> <int8 t> <int8 t> ... 0

areaIdx <uint8 t> ...
...

stopTime <float>
warmUpTime <float>

We will work with lorry volumes and maximum loads expressed in cubic metres and respec-
tively kilograms. The time required to empty a bin is a constant independent of bin’s load and
is given in seconds. The volume of the bins is expressed in cubic meters. At each bin bags are
disposed at time intervals that follow an Erlang-k distribution, for which the average rate is ex-
pressed in numbers of bags per hour, and the shape (k) is a positive integer. The individual bag
volume is given in cubic metres and the weight will be a random number uniformly distributed
in the bagWeightMin -- bagWeightMax range, expressed in kilograms (Note: use 3 decimal
points). For each area, the input file must contain an area index, the service frequency (given
as number of trips per hour) and the occupancy threshold that will trigger waste collection (a
value between 0 and 1). Finally, the roadsLayout keyword introduces the matrix representation

7

of the duration in minutes between two locations in an area. The (0,0) element corresponds to
the depot, while elements (i, j) are zero when i = j and we use -1 to indicate there is no direct
link between two locations. Remember we will be using directed graphs, i.e. there may only be
a one way link between two vertices.

In addition to the above, it is essential that you specify when the simulation should terminate
and how long is the warm-up time. These will be given in hours. Appropriate conversion to
minutes/seconds may be required.

While the order of the parameters is not strict, area descriptions of the areas must follow
the the noAreas parameter. Except for the road layout description, all parameters should be
given each on a single line.

You may use the # character to comment out a line in the input file and you should ignore
blank lines. An example is given below.

Total waste volume a lorry can accommodate (cubic metres)
lorryVolume 20
Maximum lorry load (kg)
lorryMaxLoad 7000
Time required to empty a bin (in seconds)
binServiceTime 130
Bin volume (cubic metres)
binVolume 2
Rate of the Erlang distribution of the disposal events (avg. no. per hour)
disposalDistrRate 2.0
Shape of the Erlang distribution
disposalDistrShape 2
Bag volume (cubic metres)
bagVolume 0.05
Minimum expected weight of a waste bag disposed
bagWeightMin 2
Maximum expected weight
bagWeightMax 8
Number of service areas
noAreas 1
For area 0, service performed once every 16 hours (i.e. 0.0625 trips per hour)
Bins serviced if occupancy is more or equal 75% and there are 5 bins in this area
areaIdx 0 serviceFreq 0.0625 thresholdVal 0.75 noBins 5
Road layout and distances between bin locations (in minutes)
roadsLayout

0 3 -1 -1 -1 4
3 0 5 -1 -1 -1

-1 -1 0 2 -1 -1
-1 -1 -1 0 2 2
-1 1 -1 -1 0 -1
4 -1 -1 2 4 0

Simulation duration (hours)
stopTime 36.0
Warm-up time (hours) allowed before collecting statistics
warmUpTime 12.0

8

2.6 Output Formatting

Your simulator should output information about events in a human readable format. On the
other hand the output must be easily parsable, such that specific information can be extracted
e.g. for visualisation purposes. Each event will be output on a single line in the following format:
<time> -> <event> <details>

We will output time in the format days:hours:minutes:seconds. Since some of the input
parameters (e.g. distances between locations, bin service time) are given in minutes or seconds,
you should make the appropriate conversions and work with second granularity. You must
account for the following events:

• bag disposed of
• bin load/contents volume changed
• bin occupancy threshold exceeded
• bin overflowed
• lorry arrived at/left location
• lorry load/contents volume changed

Output Specification

The output formatting for the expected events is given below. Note that parts of the func-
tionality you implement will be automatically tested. Thus strictly abiding to the
output format is essential.

<time> -> bag weighing <float> kg disposed of at bin <uint8 t>.<uint16 t>

<time> -> load of bin <uint8 t>.<uint16 t> became <float> kg and contents volume <float> mˆ3

<time> -> occupancy threshold of bin <uint8 t>.<uint16 t> exceeded

<time> -> bin <uint8 t>.<uint16 t> overflowed

<time> -> lorry <uint8 t> arrived at location <uint8 t>.<uint16 t>

<time> -> load of lorry <uint8 t> became <float> kg and contents volume <float> mˆ3

<time> -> lorry <uint8 t> left location <uint8 t>.<uint16 t>

Note that we index lorries according to their service area and bin x.y refers to bin y in area x.

Example

Example excerpt of valid output is shown next.

...

00:14:30:00 -> bag weighing 5.2 kg disposed of at bin 0.2

00:14:30:00 -> load of bin 0.2 became 140.1 kg and contents volume 1.4 mˆ3

00:14:52:20 -> bag weighing 4 kg disposed of at bin 0.4

00:14:52:20 -> load of bin 0.4 became 158.3 kg and contents volume 1.5 mˆ3

00:14:52:20 -> occupancy threshold of bin 0.4 exceeded

00:15:24:20 -> bag weighing 6.2 kg disposed of at bin 0.1

00:15:24:20 -> load of bin 0.1 became 180.1 kg and contents volume 2 mˆ3

00:15:24:20 -> bin 0.1 overflowed

00:16:00:00 -> lorry 0 left location 0.0

00:16:03:00 -> lorry 0 arrived at location 0.1

00:16:05:10 -> load of bin 0.1 became 0 kg and contents volume 0 mˆ3

9

00:16:05:10 -> load of lorry 0 became 161.1 kg and contents volume 0.9 mˆ3

00:16:05:10 -> lorry 0 left location 0.1

...

Statistics Analysis

In addition to reporting the events timeline, your application should return summary statistics
at the end of the simulation time. The analyses you are expected to perform are detailed next.

Average Trip Duration

Your simulator should report the average duration of trips performed by a lorry over the duration
of your simulation. This will provide an indication of how the bin occupancy threshold impacts
route lengths and how well heuristics solving the route planning task work. You should report
the average trip duration as a floating point number with two levels of granularity, i.e. per area
and overall. The format for displaying these statistics is the following:

area <area number>: average trip duration <average duration (minutes:seconds)>
overall average trip duration <average duration (minutes:seconds)>

Here <area number> indicates the area for which this statistic is computed.

Number of Trips per Schedule

We will also compute the average number of trips per schedule. This is particularly important
to evaluate whether a lorry can service all bins whose occupancy exceeded the given threshold
in a single trip. This will be reported as a per area and overall statistics, as follows:

area <area number>: average no. trips <average number of trips per schedule (float)>
overall average no. trips <average number of trips per schedule (float)>

Trip Efficiency

To be able to assess how efficient the waste collection process is, it is appropriate to compute
the average weight collected per unit of travel time. For this purpose you will need to trace for
each route scheduled the total duration, as well as the weight of the waste the lorry has collect
at the end of a trip. All lorries leave the origin with zero load. The efficiency will be displayed
as a floating point number, again with two levels of granularity, i.e. per area and overall, in the
following format:

area <area number>: trip efficiency <average weight per time unit (kg/min)>
overall trip efficiency <average weight per time unit (kg/min)>

Such statistics may prove useful to adjust the service frequency, or the bin occupancy thresholds.

10

Average Volume Collected

Similar to the above, it may be useful to measure the average volume of (compressed) waste
collected during over a service route. This would be useful to understand whether lorries may
have total weight or volume limitations. You will need to trace again for each route the total
duration, as well as the volume of waste the lorry has collect at the end of a trip. This metric
will be displayed as a floating point number with two levels of granularity, i.e. per area and
overall:

area <area number>: average volume collected <average waste volume (mˆ3)>
overall average volume collected <average waste volume (mˆ3)>

Percentage of Overflowed Bins

Finally, we are interested in monitoring whether bins are serviced frequently enough and whether
waste disposal rates cause bins to exceed their capacities in some areas. For this purpose, in
each area between the start of two service instance, we will compute the ratio of bins that
overflowed and their total number (multiplying by 100). It is straightforward to observe that
there are several input parameters that impact this statistic. We will use again the same two
level granularity and the following semantic:

area <area number>: percentage of bins overflowed <overflowed bins percentage(%)>
overall percentage of bins overflowed <overflowed bins percentage(%)>

Note: You must delimit the start and end of the statistics with a ’---’ sequence.

Example

An example of valid summary statistics is shown below.

area 0: average trip duration 32:20
overall average trip duration 32:20
area 0: average no. trips 1.00
overall average no. trips 1.00
area 0: trip efficiency 22.25
overall trip efficiency 22.25
area 0: average volume collected 4.7
overall average volume collected 4.7
area 0: percentage of bins overflowed 0.0
overall percentage of bins overflowed 0.0

Experimentation

To acquire a better understanding of the impact of certain parameters on the metrics of interest,
your simulator should allow experimenting with different means/shapes of the distribution of
waste bag disposal events and different bin collection frequencies. For that, in the input file you
should be able to specify a set of values instead of a single one. This set will be introduced using
the experiment keyword, followed by the values. For example, the line

11

disposalDistrRate experiment 2.0 4.0 6.0

instructs the simulator to run three simulations with the same parameters and topology, but
varying the bag disposal rate. Similarly, we can experiment with the shape of the Erlang
distribution of the disposal events, e.g.

disposalDistrShape experiment 1 2 3

We can also experiment with different service frequencies. To keep things simpler though, for
experimentation purposes we will use the same frequency for all areas and here the experiment
keyword should override the values defined for each area. For example, in the following input
script

serviceFreq experiment 0.042 0.083 0.125
noAreas 1
areaIdx 0 serviceFreq 0.0625 thresholdVal 0.7 noBins 5

although a collection frequency of 0.0625 is explicitly defined for area 0, the line serviceFreq
experiment 0.042 0.083 0.125 instructs the application to ignore later definitions and instead
run three simulations with the list of values given at the start (which in this example correspond
to one, twice, and respectively three times per day). For a given topology, it would be appropriate
to attempt to find the optimal value of one parameter (e.g. service frequency or occupancy
threshold) that maximises trip efficiency or minimises the percentage of bins overflowed.

Lastly, you should also allow experiment with multiple parameters at the same time. When
running a set of such experiments, you should disable the output of detailed information about
the events and instead only to display summary statistics. To delimit the different experiments,
precede the output of each with the following heading:

Experiment #<experiment no.>: <param1> <param1-value> <param2> <param2-value> ...

For example, a fragment of valid output would look like this:

...
Experiment #2: disposalDistrRate 2.0 disposalDistrShape 2

area 0: average trip duration 32:20
overall average trip duration 32:20
area 0: average no. trips 1.00
overall average no. trips 1.00
area 0: trip efficiency 22.25
overall trip efficiency 22.25
area 0: average volume collected 4.7
overall average volume collected 4.7
area 0: percentage of bins overflowed 0.0
overall percentage of bins overflowed 0.0

Experiment #3: disposalDistrRate 2.0 disposalDistrShape 3

average trip duration 33:12
...

12

Visualisation

As you have noticed, one requirement is to produce output in a format that is easy to parse. This
is particularly important when experimenting with different values of a parameter, as you may
wish to use this output to plot various metrics. For instance you could plot the trip efficiency as
a function of the service frequency. Similarly, you may also examine the time evolution of bins’
contents volume.

To plot your results you can load your output into spreadsheets (e.g. OpenOffice Calc,
Google Spreadsheet, Microsoft Excel, etc.) or you can used specialist plotting programs such as
GNUplot, R or matplotlib.

Compiling with Bash Script

To compile your application you will use another Bash script named compile.sh , which will
launch the suitable compiler (e.g. gcc, javac, ghc, etc.) and produce a binary file based on
your source code. This in turn will be later launched with the simulate.sh script to execute your
application. A skeleton script for compilation purposes will be provided, but you must update
it to suit your choice of programming language. As such, to compile your code you must run:

$./compile.sh

Testing

To demonstrate that your application has been thoroughly tested, you will be required to submit
a number of test inputs of your own, both valid and invalid. You should add comments in the
scripts to explain what you are testing and in your report you should explain the purpose of
each test and the results expected.

Important: The functionality of your code will be subject to automated testing with different
previously seen and unseen inputs. Thus, even if your output may be semantically correct, it
will be regarded as invalid if not abiding to the specified format and you will lose marks. Also,
refrain from prompting the user for interactive input; your programme should have enough
information to run simulations after parsing an input script. Likewise, if you decide to add
additional arguments to the command line, these should be strictly optional and documented.

Source Code Control

It is important that large software projects are well maintained, therefore a good source code
control mechanism is used. For this project we will use the git source code control system. Your
final submission will also be marked on how well you have managed your source code using git,
mostly on how appropriate your commits are. Although this is subjective, the general approach
should be having a single commit for each “unit of work”. Two good rules of thumb are:

• If you cannot describe the work done in a single sentence without using the word “and”
you probably have more than one commit’s worth of work;
• Could someone conceivably wish to revert some changes in the commit without reverting

all of them? If not, again you probably have more than one commit’s worth of work.

Importantly these are just rules of thumb. For example you might break the first by stating
a few pieces of fixing formatting and spelling errors. The following commit message may well

13

represent a reasonable commit “Corrected some spelling mistakes in the comments and removed
some trailing white space”.

It is also possible to commit too often, although this is pretty rare. Generally this will not
be penalised, unless the student is clearly abusing the source code control mechanism simply to
get around using it properly, for example automating a commit whenever a file is saved.

BitBucket

The code you develop will be automatically tested every week and you will be able to track
your progress through an online scoreboard. For this purpose, you will be required to create a
Bitbucket account on https://bitbucket.org with your university email address and fork the
CSLP-16-17 repository.

IMPORTANT: Do not share your code and repository with anyone. Keep your source
code secret. Students with identical code snippets will be reported for academic misconduct.

3 Frequently Asked Questions

• What programming language must I use?
The choice of programming language is left largely up to the student. However, there are
some restrictions. We must be able to evaluate your program. This means that it must
compile and run, unmodified on a DICE machine, without any additional dependencies.
Here is an obvious list of languages which should work on DiCE without any problems: C,
C++, Python, Java, Haskell, C#, Objective-C, Ruby. However care should be taken with
versions. You must also be able to justify your choice for a particular language.
Note that Informatics gateways (e.g. student.ssh.inf.ed.ac.uk) are not configured as
DiCE machines, so refrain from testing on these.

• Can I develop my application on my Windows/MAC/Linux laptop/desktop?
Yes. Just make sure that it compiles and/or runs on DiCE as well.

• Shouldn’t we take into account different distributions of disposal events at different locations
and changes in the rates triggered by some events (e.g. holidays)?
Arguably. In this practical we are analysing snapshots of limited durations and we assume
people have on average a similar behaviour. We could potentially evaluate even more
complex scenarios by using different inputs and further extending the functionality of
the simulator. Nevertheless, the application build according to our requirements will still
provide important insights into the system’s performance.

• What about fuel consumption, refilling times, and the waste disposed of at overflowed bins?
Although these are some of the many practical aspects one could consider, in your simu-
lations you are not required to include such constraints.

4 Getting Started

The first thing to do is to fork the CSLP-16-17 repository on BitBucket. You will need to have
your own copy of this repository. If you use your own machine, make sure to install Git and
verify that your code compiles and runs on DiCE.

14

To fork the repository go to https://bitbucket.org/patras/cslp-16-17 and in the left
hand-side panel, click on “Fork”, as shown below

Subsequently you will see a form like the one below. You can name your repository as you
wish and add a description. Remember to tick “This is a private repository”. When ready,
click “Fork repository”.

Then you must grant the teaching staff read access to your repository. Click on Settings,
then go to ”Access management”, and grant access to the following users:

• Paul Patras (username: patras)
• Philip Ginsbach (username: s1523501)

The web interface should look similar to the image below.

15

Finally, you will have to clone the forked repository to your local machine. For this purpose,
launch a terminal and type:

$ git clone https://YOUR USERNAME@bitbucket.org/YOUR USERNAME/YOUR REPOSITORY.git

where YOUR USERNAME must be your BitBucket account name YOUR REPOSITORY must be the
name you choose for your fork of the CSLP-16-17 repository.

16

Part 1
Computer Science Large Practical
2016–2017

Dr Paul Patras
School of Informatics

Issued on: Monday 19th September, 2016
Deadline: Friday 7th October, 2016 at 16:00

1 Introduction

This part of the CSLP is optional and it is primarily intended to allow you to receive useful
feedback on your project plan and on the approaches you intend to take to implement the
requirements of the practical. This will enable you to understand whether you are on track to
complete the second part in time.

Remember that this is an individual project. As such, sharing your design proposal and
source code is not permitted. At this stage you should be able to justify in your own words the
implementation strategy you will pursue.

2 Description

Part one of the CSLP requires you to submit a proposal document, no longer than 3 pages,
describing the key building blocks and design choices of the software you are expected to deliver
for Parts 2 and 3 of the CSLP assignment. At this stage you are not required to submit any
source code. Instead, you should be able to explain how you plan to implement:

1. Handling command line arguments;

2. Parsing and validation of input scripts;

3. Generation, scheduling, and execution of events;

4. Graph manipulation/route planning algorithms;

5. Statistics collection;

6. Experimentation support and results visualisation;

7. Code testing.

17

This report will prove that you have started the work on the practical and became familiar
with the concept of discrete-event stochastic simulation.

In this instance you will not be provided with exhaustive qualitative feedback as this would
arrive too late to be useful to you. You are expected to ask for specific feedback on the simulator’s
main building blocks that you plan to implement. Naturally, you cannot ask for solutions.

3 Submission & Deadline

You are to submit a PDF document summarising what you plan to implement, how, and why.
First, create a folder named doc inside your BitBucket repository. Then copy the PDF

proposal into that folder and push it to BitBucket. For example, if your proposal document
is named proposal.pdf and assuming you copied it to the appropriate folder, then you should
submit it using the commands:

$ cd doc
$ git add proposal.pdf
$ git commit -m ’Added proposal document’
$ git push

The deadline for this practical exercise is

Friday 7th October, 2016 at 16:00

4 Frequently Asked Questions

• How long should be my proposal document?
There is no minimum page limit, but it should not be longer than 3 pages. The proposal
should demonstrate you understood what is required to complete the practical, you have
a good plan of how to implement the simulator, and you can justify your choices.

• How detailed should be my proposal document?
Your proposal need not be verbose. You can explain your choices using bullet point lists.

• I have already begun coding and I want to explain which parts of my application are not
working. Can I document this for Part 1?
Yes, if you wish to then you can do this. If doing so then please ask precise questions,
without explicitly asking for solutions to very specific problems with your code.

• If I don’t complete Part 1 before the deadline, can I still submit the proposal document
with Part 2 and receive feedback on it?
You may, although this is not advisable. When submitting Part 2 it would already be
late to receive useful feedback that could help you develop good code for Part 2, which is
marked. You will receive separate feedback on the code you submit for Part 2.

18

Part 2
Computer Science Large Practical
2016–2017

Dr Paul Patras
School of Informatics

Issued on: Monday 19th September, 2016
Deadline: Friday 11th November, 2016 at 16:00

1 Introduction

This part of the CSLP is an assessed submission, covering a substantial part of the work as-
sociated with the practical. This part is summative assessment, worth 50% of the assessment
overall. Your mark will be expressed as a percentage given as an integer between 0 and 50. Thus
it is not possible to score more than 50 and it is not possible to score less than zero.

Any work you choose to submit should be your own, although you may make use of any part
of any publicly-available source code that you find useful. If you do re-use code available on
online repositories, clearly state which parts of the code are not your own. Code sharing among
colleagues is not allowed.

2 Assessment

Part two of the CSLP requires you to submit your simulator as a preliminary version of the
software you are expected to deliver for Part 3 of the assignment. It is understood that at
this stage the functionality of your application will be incomplete, but a number of features are
expected to be fully working and to have been tested extensively, as detailed next. You will only
be assessed on the execution of these features, on which you will receive qualitative feedback
through a brief report.

Your application will be tested with the existing example input scripts available on the
course, as well as with previously-unseen input scripts, and scripts you have generated yourself.

— ♦ —

Below is a list of the items/functionality expected:

1. A README file should be submitted, explaining your code structure;

2. Valid compile.sh and simulate.sh scripts must be submitted;

19

3. The submitted program compiles without errors and warnings;

4. The program displays usage information if no input files are given;

5. The program correctly performs parsing and validation of the input, including

(a) checking for valid/invalid tokens;
(b) verifying formats and magnitudes of parameters’ values;
(c) identifying missing parameters and wrong order;
(d) identifying experimentation directives;1

(e) distinguishing valid but unrealistic inputs and signalling these as warnings (e.g. dis-
posal rate smaller than service rate, lorry capacity smaller than bin capacity, etc.).

6. Your code must generate, schedule, and execute wasted disposal events correctly;

7. Your program must produce valid and correctly formatted output;

8. A suite of test input scripts must be submitted, demonstrating the level of testing you
performed for Part 2;

9. Your code should be appropriately commented;

10. Your code must exhibit an easy to follow structure and re-usability.

3 Submission & Deadline

You are to push to BitBucket the directory which contains your development project. This
should be a working application that can be compiled and executed, and which provides the
functionality listed above. If there are any limitations and known issues with your code, briefly
describing these in the README file is expected.

At this point you are not required to submit any further documentation, but your code
should be commented. A written report is neither required.

Remember to make sure your code compiles and runs on the School of Informatics DiCE
computer system. Then you should push the last version of your working code to your repository
before the deadline.

The deadline for this part of the practical is

Friday 11th November, 2016 at 16:00

4 Frequently Asked Questions

• I haven’t managed to implement all parts of the application required for Part 2. Can I still
commit what I do have?
Yes. You will be marked on your submission as is, and receive feedback on the parts which
are working. In addition there will be qualitative feedback which may be worthwhile to
you in view of fixing your code before submitting Part 3. Note that it may be difficult to
obtain marks for Part 3 if the functionality expected for Part 2 will not be working.

• I want to explain which parts of my application are not finished. Can I submit documen-
tation along with Part 2?
Yes, if you wish to then you can do this. If doing so then please also write this in your
README file.

1At this stage you are not expected to have implemented support for experimentation, but you should be able
to correctly parse scripts that will involve experiments.

20

• If I don’t complete Part 2 before the deadline, can I modify that part in the time before the
deadline for Part 3?
Yes. You could even discard everything you have done for Part 2 and start again if you
wish, though that would generally be inadvisable. Note that you may not be able to
submit something meaningful for Part 3 if you do not manage to implement the features
initially expected for Part 2.

21

Part 3
Computer Science Large Practical
2016–2017

Dr Paul Patras
School of Informatics

Issued on: Friday 2nd September, 2016
Deadline: Wed 21st December, 2016 at 16:00

1 Introduction

This is an assessed practical exercise, carrying 50% of the mark for the CSLP. Your mark for
this part will be expressed as a percentage given as an integer between 0 and 50. Again it is
not possible to score more than 50 and it is not possible to score less than zero.The work which
you submit for assessment should be your own although you may make use of any part of any
publicly-available source code which you find useful. You should mark clearly the parts of the
code that are not your own. This means you are re-using code, which is a good thing and
distinguishes it from plagiarism, which is a bad thing.

2 Assessment

Part three of the CSLP requires you to submit the finished version of your code. Your application
should be able to simulate the existing example input scripts available on the course web page,
and it should be able to simulate previously-unseen input scripts, including scripts you have
generated yourself.

You will not be evaluated on the code alone. It is essential that you prepare a written
report explaining your findings from implementing the simulator and the insights gained into
the performance of the simulated system. These should be accompanied by plots you produced
where appropriate.

— ♦ —

Below is a list of the items/functionality expected:
1. The submitted program must perform route planning and correctly schedule the service

of bins;

2. After all simulation events have been output, your application must produce correct sum-
mary statistics, following the given output format specification;

22

3. Experiments should function as described. You should disable detailed output for experi-
mentation;

4. A test suite with some sample area descriptions, which are non-trivially different from each
other, must be submitted;

5. Your code must have reasonable run times and there should be evidence of optimisation;

6. Your code should have appropriate indentation and spacing, and must not have unused
variables or dead code;

7. There should be evidence of appropriate use of source control with your submission;

8. You should document in a written report the architecture of your simulator, your design
choices, and testing efforts. You should also discuss the experiments performed, results
obtained, and insights gained.

3 Additional Credit

The requirements listed in the section above illustrate the core functionality which is required
from your application. A well engineered solution which addresses all of the above requirements
should expect to attract a very good or excellent mark. Additional credit will be awarded for
additional useful features which are not on the above list. Thus, if you have time remaining
before the submission deadline and you have already met all the requirements listed above, then
you can attract additional marks by being creative, conceiving of new features which could be
added to the application, and implementing these.

If you have added additional features to your implementation in order to attract extra credit
then you should be sure to document these. The purpose of this part of the practical exercise is
to allow you to exercise your own creativity and deliver a solution which is uniquely your own.
Note that the total highest mark you can achieve is still 100, but this additional credit may help
if you lose points due to some error found in the way you implemented standard requirements.

Examples of features you might like to consider adding could be the following:

• Allowing other types of distributions for the rubbish bin disposal times.

• Allowing community bins and lorries of different capacities.

• Using multiple lorries per area, sharing the collection demand.

If you include any additional features, first make sure that the simulator will still operate
given basic input. You can either design the extra input to be compatible with the existing input,
or you can provide a command-line flag to switch between basic and extended functionality and
clearly documenting this in your README file.

4 Submission & Deadline

You are to submit the directory which contains your developed code and the written report.
Your work will be assessed by compiling and executing your application and based on your
report. You must ensure that all source code files needed to compile and run your application
are submitted.

Your directory should contain a folder called doc where you should put a PDF version of
your written report. You should also include an updated README file in your directory, where
you should include:

23

• information about any parts of your application which are not finished or have non-obvious
functionality;

• notes on any additional features of your application of which you are duly proud;

• indication of the input scripts you have created for testing purposes (including the location
of such scripts).

You would additionally be well-advised to include some text files storing the output of your
simulator operating over your test files.

Important: Once again, first make sure your code compiles and runs on the School of
Informatics DiCE computer system. Then double check that all the necessary files have been
added and committed to your git repository and push the final version before the deadline.

The deadline for this practical exercise is

Wed 21st December, 2016 at 16:00

5 Frequently Asked Questions

• How long should be my written report?

– There is no minimum page limit. Your report should demonstrate you are familiar
with discrete-event stochastic simulations, you can interpret the output, understand
the system’s performance and you can present your results in a clear and concise
manner.

• How much does the report weight?

– The written report carries 20 marks.

24

