
School of Informatics — Computer Science Large Practical — 2017–2018 1

Computer Science Large Practical

Stephen Gilmore (Stephen.Gilmore@ed.ac.uk)

School of Informatics

Document version 1.0.4.

Issued on: November 15, 2017

About

The Computer Science Large Practical is a 20 point Level 9 course which is available
for Year 3 undergraduate students on Informatics degrees. It is not available to visiting
undergraduate students or students in Year 4 or Year 5 of their undergraduate studies.
It is not available to postgraduate students. Year 4, Year 5 and postgraduate students
have other practical courses which are provided for them.

Scope

The Computer Science Large Practical consists of one large design and implementation
project, done in three parts. The first part is administrative only, requiring setting up
and populating a source code repository for the practical. The second part is a design
document, presenting the plan of the implementation work which will realise the design.
The third part is the implementation, which should be a well-engineered implementation
of the previously-supplied design.

Part of the CSLP Deadline Out of Weight

Part 1 (Admin) 16:00 on Friday 13th October 0/1 0%

Part 2 (Design document) 16:00 on Friday 10th November 100 50%

Part 3 (Implementation) 16:00 on Friday 15th December 100 50%

Please note that although Part 1 of this practical is not weighted, you are strongly
encouraged to do it both in order to ensure that you are keeping up with the material
of the course as it progresses and because your use of your source code repository is a
factor in the assessment for Part 3 of the practical. Parts 2 and 3 are equally weighted
and constitute the assessment for the Computer Science Large Practical. There is no
exam paper for this course.

School of Informatics — Computer Science Large Practical — 2017–2018 2

Introduction

The requirement for the Computer Science Large Practical is to use the Android Studio
development environment to create an app implemented for an Android device. The app
implements a location-based mobile phone puzzle game which allows users to follow a
map and collect words which have been scattered at random around the University of
Edinburgh’s Central Area. The words make up the lyrics of a well-known song and the
puzzle aspect of the game is to guess the song from the words which have been found.
Given that it is a song-based puzzle, the game is called Songle.

— � —

The implementation language of the app is to be Kotlin (https://kotlinlang.org), a
modern, strongly-typed programming language with functional language features which
runs on the Java Virtual Machine. User-interface parts of the app are coded in XML.
For a brief introduction to Kotlin, please visit http://kotlinbyexample.org

— � —

In the Songle game, words are collected by visiting their location on the map, by which
we mean that the player literally moves to that location with their mobile phone. There
are five different versions of the map for each song, each giving progressively more hints
to help the user guess the song more easily.

Map version 1: No additional information is given, words are unclassified, and only
25% of the words are displayed.

Map version 2: Words are classified as either boring or notboring, and only 50% of the
words are displayed.

Map version 3: Words are classified as either boring, notboring or interesting, and only
75% of the words are displayed.

Map version 4: Words are classified as either boring, notboring or interesting, and all
of the words are displayed.

Map version 5: Words are classified as either boring, notboring, interesting or very-
interesting, and all of the words are displayed.

Words which are classified as boring are short, common words (such as ‘the’, ‘an’, ‘and’,
etc.) which are no help in trying to guess which song the words come from. Words which
are classified as veryinteresting are longer, less common words (such as ‘Scaramouche’,
‘thunderbolts’ and ‘lightning’) which are much more likely to help the user guess the
song the words come from. Knowing which words are interesting and which are not
allows the user to prioritise collecting certain words instead of others, making it quicker
to identify the song from the words which have been found. The five different kinds of
maps are shown in Figure 1.

https://kotlinlang.org
http://kotlinbyexample.org

School of Informatics — Computer Science Large Practical — 2017–2018 3

Key to the symbols used in the maps:

unclassified (); boring (); notboring (); interesting (); veryinteresting ()

Map 1: 25% of the words; Map 2: 50% of the words
unclassified boring / notboring

Map 3: 75% of the words; Map 4: 100% of the words
boring / notboring / interesting boring / notboring / interesting

Map 5: 100% of the words;
boring/notboring/interesting/veryinteresting

Figure 1: The five different kinds of maps, giving progressively more information.

School of Informatics — Computer Science Large Practical — 2017–2018 4

The game is backed by a collection of songs with associated maps. The list of available
songs is on-line at

— http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/songs.xml and
— http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/songs.txt

This XML document contains the information which the player of the game has to guess.
It is a numbered list of songs together with the name of the artist and the name of the
song. A YouTube link to the song is also supplied.

— � —

This collection of songs is periodically extended with additional songs in order to keep
players interested in the game as time goes by. Your app should check for a new version
of this XML document every time the user begins a new game. The XML document
contains a timestamp which is updated every time a new version of the document is
released. The data/songs/songs.xml file may be updated at any time so it is important
to use the on-line version to ensure that you are providing the player with new songs
and maps as they are released. Downloading and bundling this XML document with
your application would not achieve the desired result. The format of this XML file is
illustrated in Figure 2.

<?xml version=”1.0” encoding=”UTF−8”?>
<Songs timestamp=”2017−09−10T20:10:22.563+01:00[Europe/London]”

root=”http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/”>

<Song>
<Number>01</Number>
<Artist>Queen</Artist>
<Title>Bohemian Rhapsody</Title>
<Link>https://youtu.be/fJ9rUzIMcZQ</Link>

</Song>

<Song>
<Number>02</Number>
<Artist>Blur</Artist>
<Title>Song 2</Title>
<Link>https://youtu.be/SSbBvKaM6sk</Link>

</Song>
...

</Songs>

Figure 2: Sample of the XML format used for the list of Songle songs. The first song
is “Bohemian Rhapsody” by Queen. The second song is “Song 2” by Blur. New songs
will be added at the end of the document. Blank lines have been added in this figure to
increase readability.

http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/songs.xml
http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/songs.txt

School of Informatics — Computer Science Large Practical — 2017–2018 5

There is a Songle Word Map for each song, made available in the Keyhole Markup Lan-
guage (KML) format used by Google Earth and other geographic visualisation software.
The word maps are also available in HTML and text formats for ease of reading and
browsing online. (Most web browsers do not display KML format natively.) The word
maps and song lyrics for song number 1 in the database are available at the following
locations in the folder data/songs/01:

— http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/lyrics.txt

— http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map1.html
— http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map1.kml
— http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map1.txt

— http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map2.html
— http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map2.kml
— http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map2.txt

— http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map3.html
— http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map3.kml
— http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map3.txt

— http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map4.html
— http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map4.kml
— http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map4.txt

— http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map5.html
— http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map5.kml
— http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map5.txt

— http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/words.txt

The file words.txt contains the song lyrics with line numbers which count the lines of
the song. To prevent ambiguity, blank lines between verses are also numbered. The line
number and the line of the song are separated by a TAB character (\t).

— � —

The format of the KML files for the Songle word maps is outlined in Figure 3. A KML
document is a list of Placemarks. Each Placemark contains a name giving the unique
numerical identifier of the place, a description identifying which word of the song is
available here, and a Point. A Point has coordinates in the format 〈longitude, latitude,
height〉 where the height is always 0. In designing your game you should decide how
near a Placemark the player physically needs to be before they can be considered to have
collected that word. GPS-based devices cannot determine your true location perfectly
but the Android LocationManager API at least attempts to determine the accuracy of
its estimated location.

http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/lyrics.txt
http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map1.html
http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map1.kml
http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map1.txt
http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map2.html
http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map2.kml
http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map2.txt
http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map3.html
http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map3.kml
http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map3.txt
http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map4.html
http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map4.kml
http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map4.txt
http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map5.html
http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map5.kml
http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/map5.txt
http://www.inf.ed.ac.uk/teaching/courses/cslp/data/songs/01/words.txt

School of Informatics — Computer Science Large Practical — 2017–2018 6

<?xml version=”1.0” encoding=”UTF−8”?>
<kml xmlns=”http://www.opengis.net/kml/2.2”>
<Document>

<Style id=”unclassified”>
<IconStyle>
<scale>1.75</scale>
<Icon>
<href>http://maps.google.com/mapfiles/kml/paddle/wht−blank.png</href>

</Icon>
</IconStyle>

</Style>

<Placemark>
<name>1:2</name>
<description>unclassified</description>
<styleUrl>#unclassified</styleUrl>
<Point>
<coordinates>−3.1920514249267513,55.94610672008997,0</coordinates>

</Point>
</Placemark>

...

<Placemark>
<name>26:4</name>
<description>unclassified</description>
<styleUrl>#unclassified</styleUrl>
<Point>
<coordinates>−3.188107575106777,55.94423294710405,0</coordinates>

</Point>
</Placemark>

</Document>
</kml>

Figure 3: Sample of the KML format used in Songle word maps. The first map point
is the second word on the first line of the song (1:2). The final map point is the fourth
word on line 26 of the song (26:4). This is an extract from data/songs/01/map1.kml,
the first version of the map for the first song in the database so the words at positions
1:2 and 26:4 in the song are found by referring to data/songs/01/words.txt. Blank
lines have been added in this figure to increase readability. Some phantom text to fill
up the space. Why is it here, you ask? Well, figure captions cannot have linebreaks!
The tags <Document> and </Document> were previously omitted in error, leading to
invalid KML. These tags have been added to all KML files stored on the webserver.

School of Informatics — Computer Science Large Practical — 2017–2018 7

All points on every map have a latitude which lies between 55.942617 and 55.946233.
All points on every map have a longitude which lies between −3.184319 and −3.192473.

Forrest Hill KFC
(55.946233,−3.192473) (55.946233,−3.184319)

↘ ↙

Songle
is

played
here

↗ ↖
(55.942617,−3.192473) (55.942617,−3.184319)

Top of the Meadows Buccleuch St bus stop

Bonus features

In addition to the game features described above you should design and implement some
Bonus Features, which set your app apart from others. These may be enhancements
which are intended to make the game more interesting to play, or more rewarding,
causing the user to play more frequently, or for longer sessions. What the bonus features
are is up to you but you could consider enhancements in areas such as:

• user preferences, allowing the user to decide whether to solve already-solved prob-
lems, or be presented with a new song every time;

• giving hints such as free words, or even displaying a line from the song;

• recording the distance walked by the user while playing the game;

• timing-based play (play against the clock);

• play modes (easy, moderate, difficult) or attainment levels (beginner, advanced,
expert);

• a scoring system which reflects the attainment level, or play mode; or

• ‘background’ mode where words are collected without user intervention while walk-
ing, without the user needing to click to confirm collection.

You are not limited to the items above; this list is only to prompt you to think about your
own bonus features. You should aim to add two additional bonus features of your own
invention, but games with more than two additional bonus features are also welcome.

School of Informatics — Computer Science Large Practical — 2017–2018 8

Computer science aspects of the practical

This practical helps you to improve three useful skills in computer science:

• learning new programming idioms: you will learn some new programming
concepts and gain experience of a functional programming language on the JVM;

• using version control systems: you are to use the Git version control system
to manage the source code of your application—learning how much and when to
commit code is a useful skill;

• writing readable source code (in an unfamiliar language): the Kotlin
source code which you submit will be inspected for clarity and readability (as
well as correctness) so you should try to write clear, easy-to-read code.

Frequently asked questions

• I don’t have an Android device. I’ve never written an app before. How can I do
this practical?

– You don’t need to have an Android device to do this practical exercise. The
software which you develop will run on an emulator which is freely available
for Windows, Mac OS X, and GNU/Linux platforms. There is no expectation
that you have written an app before: you will learn how to do this in the course
of this practical.

• Can I develop my app on my laptop?

– Yes. You are strongly encouraged to do this because it will encourage you to
investigate the Android SDK and related libraries. Of course, we recommend
taking regular, well-organised backups, which is an important service provided
by a version control system.

• I don’t want to learn a new programming language; can I implement my app in
Java instead?

– That’s what’s being done in the Software Engineering Large Practical, so you
can just transfer to that course.

• Instead of Kotlin, can I implement my app in Ruby/Python/Scala/C#?

– No, not for this practical. We need all students to be working in the same
programming language in order to make a fair assessment.

School of Informatics — Computer Science Large Practical — 2017–2018 9

However, Kotlin is not an arbitrary choice. Kotlin is the latest-and-greatest
programming language for the Android platform and there are many people
believe that it may be the future of Android development, becoming used in
more and more projects.

• Do I have to develop in Android Studio? I much prefer Eclipse/Emacs/vi etc.

– You are required to submit an Android Studio project so we strongly recom-
mend developing in Android Studio for this practical exercise. An Android
project developed in Eclipse uses a different build system from Android Studio
and can require some significant effort to be made to work in Android Studio.
Android development in Eclipse has been unsupported since mid-2015 so you
will not be able to access the latest libraries and Android services. Android
Studio also contains tools to convert Java code to Kotlin.

• Is there a specified device for this practical or a specified Android version?

– No. You can choose an Android device and an Android version. If you have
an Android device then you could choose a suitable specification for that
device, to allow you to test your app on a real device. If you do not have an
Android device then choose the emulator for a relatively recent device and a
relatively recent version of the Android platform.

• Who owns the intellectual property of the code that I submit? Can I make it public
or extend if after the practical is over?

– You own the code which you produce for this practical; the University has no
claim on any of it. After the practical is over you can extend or use your code
in any way that you like. You can make it a part of your public portfolio of
work and release it open-source or under any other software licence. However,
please wait at least eight calendar days after the submission deadline for Part 3
of the practical before making your repository public because the University
allows late submission (with daily penalties) for up to seven calendar days
after a deadline; see Appendix A and the link therein for details.

• I have a server where I can host web services. Can I transfer some of the app’s
functionality to the server side?

– In principle, yes, but the server-side code will also have to be written in Kotlin.
You will also need to submit your server-side code for assessment, and it too
should be readable and clear.

School of Informatics — Computer Science Large Practical — 2017–2018 10

Part 1

Computer Science Large Practical

Stephen Gilmore (Stephen.Gilmore@ed.ac.uk)

School of Informatics

1.1 Introduction

This part of the CSLP is zero-weighted: all of the assessment is based on Part 2 and
Part 3 of the practical. Nonetheless, you are strongly encouraged to complete this part
to ensure that you are keeping up with the material of the course.

— � —

In this project you are creating an Android app. The first part of your work on this
practical is the necessary admin of installing the Android Studio software, creating a
simple Android project, committing this to a version control system, and notifying the
course lecturer when this is done.

1.2 Installing Android Studio

The recommended IDE for Android development is Android Studio, freely available
for Mac, Windows and Linux systems. Android Studio is available for download from
https://developer.android.com/studio/index.html. Android Studio is a platform, not
a single application, so when you have installed Android Studio on your system and
begin to use it you will see that it periodically asks to download other components
such as Android software libraries, Android device emulators, and the like. It will also
periodically suggest that you upgrade components to the latest versions. We recommend
following these suggestions and installing/upgrading these components when Android
Studio prompts you to do so.

— � —

B For this practical you will need to use Android Studio 3.0 Beta 6 or higher, available
from https://developer.android.com/studio/preview/index.html.

https://developer.android.com/studio/index.html
https://developer.android.com/studio/preview/index.html

School of Informatics — Computer Science Large Practical — 2017–2018 11

1.3 Creating a sample project

Create a new Android project in your installation of Android Studio following the instruc-
tions at https://developer.android.com/studio/projects/create-project.html. Choose the
form factors and API level. Unless you have a compelling reason not to, we recommend
choosing Android 4.4 (KitKat) API level 19 or higher. Add an activity to your project
such as a Google Maps Activity. Check whether you can run your project using the
Android emulator or an Android device.

1.4 Using version control

In the Computer Science Large Practical you will be creating Android project resources
such as XML documents and Kotlin files which will form part of your implementation, to
be submitted in Part 3 of this practical. These resources should be placed under version
control in a source code repository using the Git version control system. The hosting
service which we recommend is BitBucket (https://bitbucket.org/), because this offers
free, private Git repositories for small projects. Create a login on the BitBucket service
and create a Git repository there referring to Figure 1.4 for an example of how to set up
such a repository.

Figure 1.4: Creating a private Git repository (https://bitbucket.org/repo/create)

Check your current Android project into your GitHub repository. It is not important
what your project does at this stage, only that your repository contains a valid Android
project.

https://developer.android.com/studio/projects/create-project.html
https://bitbucket.org/
https://bitbucket.org/repo/create

School of Informatics — Computer Science Large Practical — 2017–2018 12

Caution: Although Git repositories created on BitBucket are private by default, Git
repositories created on GitHub are public by default, meaning that anyone and everyone
can see and make use of your source code. Private repositories can be created on GitHub
if you pay for the service or you have a registered student account.

— � —

Please contact the course lecturer with details if you would like to use a different Git
repository host.

1.5 How to submit

Add a standard README.md Markdown file to your repository which identifies you by
name and university matriculation number.

• If you have used BitBucket for your project then please give BitBucket user
stephengilmore read access to your repository. (Click the “Send invitation” but-
ton in BitBucket.)

• If you have used GitHub for your project then please give GitHub user sgilmore

read access to your repository. (Settings → Collaborators → “Add collaborator”
in GitHub.)

School of Informatics — Computer Science Large Practical — 2017–2018 13

Part 2

Computer Science Large Practical

Stephen Gilmore (Stephen.Gilmore@ed.ac.uk)

School of Informatics

2.1 Introduction

This part and the next part of the CSLP are for credit: all of the assessment is based
on Part 2 and Part 3 of the practical, weighted equally. Please now read Appendix A
for information on good scholarly practice and the School’s late submission policy.

2.2 Description

The second part of the CSLP involves the creation of a design document, presenting the
plan of the implementation work which will realise the design. The design document
presents your ideas for your version of the game and is a record of the design decisions
which you have taken so far in the practical. It commits you to certain decisions, which
are to be realised in the implementation.

— � —

Your design document should record your design decisions for your app including a
definitive list of the bonus features which are offered by your app. Your implemen-
tation will be expected to provide these bonus features, in addition to being a playable
implementation of the Songle game.

— � —

Your design document should represent the visual layout of your app by being illustrated
with screenshots of the views which you have designed for the activities in your
app. These can be taken either from the Android emulator running a (partially complete)
version of your app, or from the visual editor in Android Studio, rendering your XML
layouts, with no Kotlin code attached. Include as many as possible, to give the clearest
picture of how your app will work in practice. You should aim to show a typical play
of the game including at least the user viewing a map, guessing which song this is, and
being informed whether or not they are correct.

School of Informatics — Computer Science Large Practical — 2017–2018 14

The expected length of this design document is between 6 and 10 pages. The choice
of font, font size, and margins is up to you but please consider the readability of your
submission. The submission format is PDF only.

2.3 Typical questions for the design document to answer

[This material previously appeared in Lecture 5 of the course, and is reproduced here for
convenience.]

• How is the song that the player has to identify chosen?

• What does a player have to do to collect a word? Does anything happen to the
placemark when the word is collected?

• After a player has collected several words can they review them? If so, how do
they do that? What does the “review screen” look like?

• When a player thinks that they can guess the song how do they enter their guess?

– What happens if their guess is correct?

– What happens if their guess is incorrect?

• When a player thinks that they can’t guess the song how do they indicate that
they give up? What happens then?

• What determines which of the five versions of the map is shown?

• Can the player set the “level of difficulty” of the game? If so, how?

• After a player has identified a song, could that song be chosen again as the puzzle
to solve?

• After a player has identified several songs, can they review their list of solved
puzzles? What does that “review screen” look like?

• What does the game do if a data connection (4G) is not available? Can it be
played at all?

2.4 Allocation of marks

Marks are allocated in this practical according to the following weighting.

Design decisions (40%): Your design document should provide evidence that you
have moved forward from the high-level specification of the app which is given on
pages 2–7 of this document, making progress towards your implementation. Your
design document should answer questions such as those featured in Section 2.3
above and record other design decisions that you have made.

School of Informatics — Computer Science Large Practical — 2017–2018 15

Bonus features (40%): Recall (from page 7) that you are expected to add two or
more bonus features to your app. Your design document should clearly identify
what these are. Marks will be allocated here based on the added value provided
by the bonus features which you offer. Are they just some additional decorations
or do they actually make the game more interesting to play, or more rewarding?

Design of views (20%): Screenshots are included in your design document to demon-
strate your progress and to clarify aspects of your design expressed in your design
decisions. Based on the screenshots which you provide, marks are allocated here in
recognition of the coherency and consistency of the screens which you show from
your application. Do they clearly belong to the same app, giving the impression
of an app which has been designed thoughtfully? Do they represent aesthetically-
pleasing design of a game which is fun to play?

2.5 How to submit

Please submit your design document from your DICE account using the command:

submit cslp cw2 design.pdf

(Assuming that your design is in a document called design.pdf.)

2.6 Things to consider

• If in doubt, leave it out. Don’t promise to deliver bonus features which you have
no idea how to implement. Think ahead to your implementation and try to be at
least 80% sure that you know how to implement the features that you are promising
to deliver. It is better to promise less and deliver more than to promise more and
deliver less, so don’t make your list of bonus features too long.

• You will need to investigate Android concepts and programming in order to be able
to make informed decisions about the bonus features which you will implement.

• Although this is a design document, and you do not have to supply any code at this
stage, you are strongly encouraged to begin coding your app now, to clarify your
ideas about various details of Android application structure and to ensure that
you have made a start on the implementation of the app comfortably in advance
of the Part 3 deadline for the CSLP.

School of Informatics — Computer Science Large Practical — 2017–2018 16

Part 3

Computer Science Large Practical

Stephen Gilmore (Stephen.Gilmore@ed.ac.uk)

School of Informatics

3.1 Introduction

As noted above, this part and the previous part of the CSLP are for credit: all of the
assessment is based on Part 2 and Part 3 of the practical, weighted equally. Informa-
tion on good scholarly practice and the School’s late submission policy is provided in
Appendix A.

— � —

The third part is the implementation. This should be a well-engineered implementation
of the previously-supplied design. The code which you submit for assessment should be
readable, well-structured, and thoroughly tested.

3.2 Report and documentation

Please submit a report describing the following, and any other special features of your
implementation which would be relevant for the marker to know.

• Your experience of Kotlin as a development language. Give a report on your
experience of using Kotlin to develop your app. You can report on:

– good features of the language which you found helpful;

– bad features of the language which you found to be problematic or confusing;
and

– whether or not you would recommend that Java developers should start to
migrate to Kotlin.

• Algorithms and data structures used for the core functions of the implementation.
Describe the algorithms and data structures which are used in your implementation
for such features as:

School of Informatics — Computer Science Large Practical — 2017–2018 17

– download and parsing of the XML-based Songle song list from the server;

– persistent storage of the user’s progress in playing the game; and

– detection of the words which can be collected at the user’s current location.

• Parts of your design which have not been realised in the implementation. It could
be that you have not been able to implement something which you had planned in
your design. If so, document that here.

• Additional features of your implementation which were not described in your de-
sign. It could be that you have implemented something which you had not planned
in your design. If so, document that here.

• (Only if relevant1.) Instructions for installing the server-side part of your project,
if you have one. If you have a server-side component to your project, then pro-
vide details of how to install and run this component. Note that your server-side
component (if any) must also be implemented in Kotlin.

• Acknowledgements: Include an acknowledgement for any part of your code which
comes from a publicly-available source such as Android tutorial examples, An-
droid sample projects, or open-source projects hosted on GitHub, BitBucket or
elsewhere. You do not need to include an acknowledgement for any code which
was presented in the course lecture slides.

— � —

The expected length of this document is between 4 and 6 pages, but shorter or longer
submissions will also be accepted. The choice of font, font size, and margins is up to you
but please consider the readability of your submission. The submission format is PDF
only.

3.3 Allocation of marks

Marks are allocated in Part 3 of this practical according to the following weighting.

Documentation (20%): As described in Section 3.2 above, you are to provide a doc-
ument describing your implementation. Your document should be a clear and
accurate description of your implementation. An important part of your docu-
ment is your report on your experience of using Kotlin as a development language.
Do not neglect this part of your document.

Functionality (30%): Your submission should be a playable implementation of the
Songle game, extended with bonus features of your choosing. Your submission
should be based on your previously-submitted design although you can modify

1Depending on the bonus features which you decided to implement, a server-side component might
have been required; if you do not have one then you need not include anything on this in your document.

School of Informatics — Computer Science Large Practical — 2017–2018 18

and improve your design in whatever way you wish to add improvements. Do not
feel limited by the design which you submitted for Part 2, you can add whatever
improvements you wish before this submission. Your game should be usably effi-
cient, without significant stalls while playing. Your game should correctly handle
other songs being added to the song database, and should not assume a specific
number of songs.

Bonus features (20%): Bonus features implemented in your game will be evaluated
on whether they make the game more interesting to play, or more rewarding.
More significant bonus features are more credit-worthy. If you have had ideas for
additional bonus features which were not described in your Part 2 submission then
add them here, and document them in your submission document.

Interface (10%): The user interface of your app is an important feature in appealing
to potential users. The user interface for your submission should be based on
your previously-submitted user interface as seen in screenshots in your Part 2
document — although you can modify and improve the user interface of your app
in whatever way you wish to add improvements. As before, do not feel limited by
the user interface design which you submitted for Part 2, you can make whatever
alterations or improvements you wish before this submission.

Code quality (10%): Your code should be readable and clear, making use of private
values, variables and functions, and encapsulating code and data structures. Note
that Kotlin encourages the use of (immutable) values over (mutable) variables so
consider if a var in your Kotlin code could be a val instead. All else being equal,
code with comments should receive a higher mark than code without comments.
Everyone thinks that their code is self-documenting, but it isn’t. Note that use
of deprecated methods, interfaces, or classes will not be a factor in determining
code quality; no penalty will be applied for using deprecated methods, interfaces,
or classes.

Use of your repository (10%): All else being equal, a project where version control
using a source code repository such as BitBucket or GitHub has been used to
manage the project code and resources throughout the duration of the project
should receive a higher mark than one where version control has been used only a
little (or has not been used at all).

Please read also Section 3.6 below for further information on the marking criteria for
Part 3.

— � —

3.4 Preparing your submission

• Create a new folder to contain your submission. Assuming that your folder is
called songle, create two sub-folders songle/doc and songle/android.

School of Informatics — Computer Science Large Practical — 2017–2018 19

Place a copy of your documentation in the songle/doc folder and place a copy of
your Android Studio project in the songle/android folder.

(Only if relevant.) If your submission has a server-side component then create a
third sub-folder called songle/server and place a copy of your server-side code
in there.

• (Optional, you can skip this step if you wish to.) You can remove any keys which
you have generated for Google Maps or other APIs. Replace these with the text
YOUR KEY HERE.

• Make a compressed version of your folder using ZIP compression.

– On Linux systems use the command zip -r songle.zip songle .

– On Windows systems use Send to > Compressed (zipped) folder.

– On Mac systems use File > Compress “songle”.

3.5 How to submit

Please submit your implementation work from your DICE account using the command:

submit cslp cw3 songle.zip

(Assuming that your implementation is in a ZIP archive called songle.zip.)

3.6 Things to consider

• Your submitted Kotlin (and other) code will be read and assessed by a person, not
a script. It is not a waste of time to add comments to your code, documenting
your intentions. Your submitted code should be readable and clear.

• Logging statements (using Log.d and friends) and diagnostic print statements
(using println and friends) are useful debugging tools for Android apps. You do
not need to remove them from your submitted code. It is fine for these to appear
in your submission.

• The game should be robust. Failing with a NullPointerException or other Kotlin
run-time error will be considered a serious fault.

• [This point has been incorporated into Section 3.3 above.]

School of Informatics — Computer Science Large Practical — 2017–2018 20

Appendix A

Coursework Regulations

Good scholarly practice

Please remember the University requirement as regards all assessed work for credit.
Details about this can be found at:

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

Furthermore, you are required to take reasonable measures to protect your assessed work
from unauthorised access. For example, if you put any such work on a public repository
then you must set access permissions appropriately (generally permitting access only to
yourself, or your group in the case of group practicals).

— � —

The Computer Science Large Practical is not a group practical, so all work that you
submit for assessment must be your own, or be acknowledged as coming from a publicly-
available source such as Android tutorial examples, Android sample projects, or open-
source projects hosted on GitHub, BitBucket or elsewhere.

Late submission policy

It may be that due to illness or other circumstances beyond your control that you
need to submit work late. The School of Informatics late submission policy aligns with
the university’s Assessment Regulations which applies a penalty of 5% per day for a
maximum of 7 calendar days after the deadline. For more information, see

http://web.inf.ed.ac.uk/infweb/student-services/ito/admin/coursework-
projects/late-coursework-extension-requests

The staff of the Informatics Teaching Organisation will approve extension requests up
to 7 days in accordance with the “good reasons” defined in assessment regulation 28.6.

— � —

Please note that things that would not be considered good reasons include (anong other
things) last-minute computer problems and loss of work through failing to backup your
source code. Frequent commits of your work into a remote source code repository such
as BitBucket or GitHub provide an off-site backup of your work which can allow you to
continue from where you left off in the case of a disk or other hardware failure, so we
recommend committing your work frequently.

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct
http://web.inf.ed.ac.uk/infweb/student-services/ito/admin/coursework-projects/late-coursework-extension-requests
http://web.inf.ed.ac.uk/infweb/student-services/ito/admin/coursework-projects/late-coursework-extension-requests

School of Informatics — Computer Science Large Practical — 2017–2018 21

Appendix B

Document version history

Version 1.0.1: Fixed a bug in the submit command which had the wrong exercise
number.

Version 1.0.2: Corrected the KML files on the server to be valid KML. Updated the
example in Figure 3 to reflect the new state of the files.

Version 1.0.3: Added Section 2.3 with the list of design questions which were presented
in Lecture 5 of the course and Section 2.4 giving the allocation of marks for Part 2
of the practical.

Version 1.0.4: Added Section 3.3 giving the allocation of marks for Part 3 of the prac-
tical. Changes to the text are marked with blue change bars in the left-hand
margin.

	Introduction
	Installing Android Studio
	Creating a sample project
	Using version control
	How to submit
	Introduction
	Description
	Typical questions for the design document to answer
	Allocation of marks
	How to submit
	Things to consider
	Introduction
	Report and documentation
	Allocation of marks
	Preparing your submission
	How to submit
	Things to consider

