
GDB Debugger How To

Computer Security
School of Informatics

University of Edinburgh

Debuggers are powerful tools with the main purpose to aid programmers in understanding
the exact behavior of a programme, for example when trying to fix bugs. Things that can be
done include tracing the execution steps of a programme and pause the execution at a desired
line in order to interactively experiment with its current state. GDB is the most commonly
used debugger for programmes written in C and other common compiled languages, as well as
x86 machine code. We will use GDB in Coursework 3 to exploit a buffer overflow vulnerability.
The purpose of this walkthrough is to get to know the basic use of this tool.

1 Basics

As always when starting to experiment with something, we open a terminal and move to a new
empty directory:

$mkdir gdb-practice

$cd gdb-practice

Then we create a file named sample.c that contains the following C code using your favorite
editor:

1 #include <stdio.h>

2
3 int gcd(int a, int b) {

4 if(b == 0) {

5 return a;

6 }

7 else {

8 return gcd(b, a % b);

9 }

10 }

11
12 int main() {

13 int a, b, res;

14
15 printf("Enter two integers: ");

16 scanf("%d %d", &a, &b);

17
18 res = gcd(a, b);

19
20 printf("The GCD of %d and %d is %d.\n", a, b, res);

21 return 0;

22 }

1

We now compile this file to sample using the -g option to enable debugging support:

$gcc -g sample.c -o sample

Now we can start using gdb:

$gdb sample

Now we are in the interactive environment. gdb has loaded the compiled programme and
waits for a command. The simplest thing we can do is just run the programme by issuing the
command run (pretty intuitive). Incidentally this is the same as just executing the programme
normally, without gdb (i.e. issuing ./sample in the terminal). After doing the interaction with
the programme (and learning the gcd of two numbers), gdb will inform us that the process
exited normally. We can now issue quit to quit from gdb (what a surprise). The whole thing
should look something like this:

Reading symbols from sample ... done.

(gdb) run

Starting program: sample

Enter two integers: 42 60

The GCD of 42 and 60 is 6.

[Inferior 1 (process 7158) exited normally]

(gdb) quit

The run command can be shortened to r; likewise quit is the same as q.
Now for the next step, which is to see the execution of the programme line by line. We

start gdb just like before:

$gdb sample

We first issue the command start which will start the execution of the programme but will
not actually run it. It will instead wait at the beginning of the main() function for another
command:

(gdb) start

Temporary breakpoint 1 at 0x40060c: file sample.c, line 12.

Starting program: sample

Temporary breakpoint 1, main () at sample.c:12

12 int main() {

(gdb)

Now we will issue the next (a.k.a., you guessed it, n) command, which executes one line of
code at a time. If you invoke it repeatedly you can see the execution of the programme line by
line until main() returns:

2

(gdb) start

Temporary breakpoint 1 at 0x40060c: file sample.c, line 12.

Starting program: sample

Temporary breakpoint 1, main () at sample.c:12

12 int main() {

(gdb) n

15 printf (" Enter two integers: ");

(gdb)

16 scanf ("%d %d", &a, &b);

(gdb)

Enter two integers: 60 32

18 res = gcd(a, b);

(gdb)

20 printf ("The GCD of %d and %d is %d.\n", a, b, res);

(gdb)

The GCD of 60 and 32 is 4.

21 return 0;

(gdb)

22 }

(gdb)

0x00007ffff7a60640 in __libc_start_main () from /lib64/libc.so.6

(gdb)

Single stepping until exit from function __libc_start_main ,

which has no line number information.

[Inferior 1 (process 7354) exited normally]

Another shortcut that will prove useful: pressing Enter with no command will issue again the
last command given.

You may notice that at line 18 the debugger did not show the contents of the gcd() function.
If we want to do this, the step command will prove useful. Let’s invoke gdb once more and issue
start as the first command. We can now issue next until we see line 18 and then issuing step

(or s) will take us into the gcd() function code. We can also try the list (or l, so predictable)
command to see the 10 lines of code around our current position. Issuing this command one
more time will print the next ten lines. Furthermore, if we’re interested in seeing the value
stored in, say, variable a, we can issue p a (exercise for the reader: guess what the shorthand
we just used stands for). We can even do p a = 4 to change the value of the variable if we wish
to. When we’ve had enough steps and we want to just execute the rest of the programme, we
can use c (which stands for continue).

3

(gdb) start

Temporary breakpoint 1 at 0x40060c: file sample.c, line 12.

Starting program: sample

Temporary breakpoint 1, main () at sample.c:12

12 int main() {

(gdb) n

15 printf (" Enter two integers: ");

(gdb)

16 scanf ("%d %d", &a, &b);

(gdb)

Enter two integers: 101 51

18 res = gcd(a, b);

(gdb) s

gcd (a=101, b=51) at sample.c:4

4 if(b == 0) {

(gdb) l

1 #include <stdio.h>

2

3 int gcd(int a, int b) {

4 if(b == 0) {

5 return a;

6 }

7 else {

8 return gcd(b, a % b);

9 }

10 }

(gdb)

11

12 int main() {

13 int a, b, res;

14

15 printf (" Enter two integers: ");

16 scanf ("%d %d", &a, &b);

17

18 res = gcd(a, b);

19

20 printf ("The GCD of %d and %d is %d.\n", a, b, res);

(gdb) p a

$1 = 101

(gdb) p a = 606

$2 = 606

(gdb) p a

$3 = 606

(gdb) cont

Continuing.

The GCD of 101 and 51 is 3.

[Inferior 1 (process 7700) exited normally]

Notice that in this example we messed with the variable a inside the function gcd() and
as a result the printf() at the end of main() printed the original value of a (that is 101),
as we haven’t changed that variable (since C passes arguments to functions by value, not by
reference). The result returned however is the gcd of 606 and 51, because the whole calculation
was done inside gcd() with a = 606. We have managed to trick the programme into printing

4

something wrong.
One last command and we will have covered all the basics. We start gdb once more. Suppose

that we want to see what is going on in gcd() without having to next our way there every
time. For this we use a very important tool in debuggers, breakpoints. The first command,
before even starting, will be break gcd (a.k.a. b gcd), which will set a breakpoint inside the
first line of the function. We can now directly run our programme (which is the same as start
and continue) and it will automatically stop just inside the function. We can use the previous
commands to mess around as we please. Breakpoints work with line numbers, too.

Notice however that gcd() calls itself (jargon: gcd() is recursive), thus issuing continue

again will reach the same breakpoint repeatedly until the function isn’t called anymore. To
avoid smashing Enter for a potentially long time, we can remove the breakpoint with clear

gcd:

(gdb) b gcd

Breakpoint 1 at 0x4005e4: file sample.c, line 4.

(gdb) run

Starting program: sample

Enter two integers: 61 15

Breakpoint 1, gcd (a=61, b=15) at sample.c:4

4 if(b == 0) {

(gdb) cont

Continuing.

Breakpoint 1, gcd (a=15, b=1) at sample.c:4

4 if(b == 0) {

(gdb)

Continuing.

Breakpoint 1, gcd (a=1, b=0) at sample.c:4

4 if(b == 0) {

(gdb) clear gcd

Deleted breakpoint 1

(gdb) b 21

Breakpoint 2 at 0x400670: file sample.c, line 21.

(gdb) cont

Continuing.

The GCD of 61 and 15 is 1.

Breakpoint 2, main () at sample.c:21

21 return 0;

(gdb)

Continuing.

[Inferior 1 (process 8012) exited normally]

OK, fine, it was two commands. If you master these tools though you can debug effectively
programmes written in C and many other languages.

2 Return address of a function

The debugger can also be used to interact with the assembly of a progamme. In order to exploit
the buffer overflow in Coursework 3, we will have to learn the return address of a function, which
can be retrieved from the assembly.

5

In order to see the assembly of the main() function of our executable, we will issue the
command disassemble main (or disas main):

(gdb) disas main

Dump of assembler code for function main:

0x0000000000400604 <+0>: push %rbp

0x0000000000400605 <+1>: mov %rsp ,%rbp

0x0000000000400608 <+4>: sub $0x20 ,%rsp

0x000000000040060c <+8>: mov %fs:0x28 ,%rax

0x0000000000400615 <+17>: mov %rax ,-0x8(%rbp)

0x0000000000400619 <+21>: xor %eax ,%eax

0x000000000040061b <+23>: mov $0x400714 ,%edi

0x0000000000400620 <+28>: mov $0x0 ,%eax

0x0000000000400625 <+33>: callq 0x4004a0 <printf@plt >

0x000000000040062a <+38>: lea -0x10(%rbp),%rdx

0x000000000040062e <+42>: lea -0x14(%rbp),%rax

0x0000000000400632 <+46>: mov %rax ,%rsi

0x0000000000400635 <+49>: mov $0x400729 ,%edi

0x000000000040063a <+54>: mov $0x0 ,%eax

0x000000000040063f <+59>: callq 0x4004c0 <__isoc99_scanf@plt >

0x0000000000400644 <+64>: mov -0x10(%rbp),%edx

0x0000000000400647 <+67>: mov -0x14(%rbp),%eax

0x000000000040064a <+70>: mov %edx ,%esi

0x000000000040064c <+72>: mov %eax ,%edi

0x000000000040064e <+74>: callq 0x4005d6 <gcd >

0x0000000000400653 <+79>: mov %eax ,-0xc(%rbp)

0x0000000000400656 <+82>: mov -0x10(%rbp),%edx

0x0000000000400659 <+85>: mov -0x14(%rbp),%eax

0x000000000040065c <+88>: mov -0xc(%rbp),%ecx

0x000000000040065f <+91>: mov %eax ,%esi

0x0000000000400661 <+93>: mov $0x40072f ,%edi

0x0000000000400666 <+98>: mov $0x0 ,%eax

0x000000000040066b <+103>: callq 0x4004a0 <printf@plt >

0x0000000000400670 <+108>: mov $0x0 ,%eax

0x0000000000400675 <+113>: mov -0x8(%rbp),%rcx

0x0000000000400679 <+117>: xor %fs:0x28 ,%rcx

0x0000000000400682 <+126>: je 0x400689 <main +133>

0x0000000000400684 <+128>: callq 0x400490 <__stack_chk_fail@plt >

0x0000000000400689 <+133>: leaveq

0x000000000040068a <+134>: retq

End of assembler dump.

By looking closely we can see that the call to gcd() happens at this instruction:

0x000000000040064e <+74>: callq 0x4005d6 <gcd>

We have a lot of information here: First of all, this instruction resides at the position
0x000000000040064e in memory, or 74 positions after the beginning of main(), so it will be
executed when the programme counter points to this position. Second, the instruction is of
type callq and calls the function whose first line is at the position 0x4005d6 (the preceeding
0s are implied) and whose name is gcd, so after this instruction is executed, the programme
counter will point to 0x00000000004005d6. What the callq function does before jumping to
0x00000000004005d6 is to push onto the stack the current value of the programme counter so
that gcd() knows the address to return to when it completes its execution, in order for main()
to continue executing from where it handed over to gcd(). The variables defined within the

6

function are also pushed onto the stack, thus if the programme allows us to place in a variable
more data than it is designed to hold, the overflowing data may overwrite the spot of the stack
where the return address is saved. When we design our exploit, we will have to change this
return address to point to our malicious piece of code. Please note that the addresses shown
when viewing the assembly of a programme in gdb are slightly offset comparing to those that
the programme actually uses when executed, so some trial and error may be needed to find this
exact offset and calculate the correct return address.

Some more gdb commands that we will use are the following: layout split, which creates
a frame containing the assembly and a frame with the source code. This will greatly help us
to keep context when debugging. If we want to see only the source code, we can instead use
layout src and for the assembly layout asm. To leave the layout environment (a.k.a. TUI)
we can type <Ctrl> + x a. To execute line by line the assembly code we can use the variants
nexti and stepi (next instruction and step instruction respectively). They work just like next

and step but they consider assembly lines, not source code lines. The last useful command is
x/bx <address>, which returns the machine code of the instruction in the given address:

(gdb) start

Temporary breakpoint 1 at 0x40060c: file sample.c, line 12.

Starting program: sample

Temporary breakpoint 1, main () at sample.c:12

12 int main() {

(gdb) stepi

0x0000000000400615 12 int main() {

(gdb)

0x0000000000400619 12 int main() {

(gdb)

15 printf (" Enter two integers: ");

(gdb) nexti

0x0000000000400620 15 printf ("Enter two integers: ");

(gdb)

0x0000000000400625 15 printf ("Enter two integers: ");

(gdb)

16 scanf ("%d %d", &a, &b);

(gdb) x/bx 0x40064e

0x40064e <main +74>: 0xe8

Finally, if we want to compile the source code to assembly language, we can run

gcc -S sample.c -o sample.s

to generate the file sample.s.

7

