Bitcoin

Orfeas Stefanos Thyfronitis Litos

Special thanks to Dionysis Zindros

University of Edinburgh – Informatics School 28/11/2017

Lecture aims

- What is bitcoin
- Addresses, keys
- Transactions, change
- Bitcoin graph, edges, nodes, balances, owners, utxo, coinbase
- Wallets
- Mining, consensus, blockchain, genesis
- Proof-of-work, difficulty, confirmations, miner payment, fees
- Bitcoin value

Bitcoin

- Digital currency
- Allows sending money online

Bitcoin advantages

Instantaneous money transfer (< 1 sec)

- Instead of 1 2 days for local bank transactions
- $^{\circ}$ or 20 days for international bank transactions
- Fast transaction confirmation (10 min)
- Security through cryptographic and mathematical properties
 - Instead of security against forgery through chemical/physical properties

How can I get bitcoin?

- In the same way you get pounds!
- You can work and get paid in bitcoin
- You can **sell** products and services for bitcoin
- You can **exchange** pounds for bitcoin
 - $^{\circ}$ With exchange services
 - https://cex.io
 - $^{\bigcirc}$ $\,$ With somebody else in person
 - https://localbitcoins.com
 - A friend with bitcoin that is willing to exchange

Bitcoin network

- All nodes connected to common p2p network
- Every node runs a bitcoin implementation (bitcoind, bcoin, etc.)
- Most implementations are open source
- Anyone can **freely** join the network
- Nodes do not have to trust the network! Everybody assumes that neighbours may lie

Keys

- Bitcoin uses an elliptic curve (secp256k1) for its public key cryptography
- A user can create a keypair (P, x)
 - P: public key
 - $^{\circ}$ x: private key
- An **address** can be generated from the public key
- We **receive** coins with the address
- We **spend** coins with the private key

Keys example

Private key:

5JXesisRRU2Z7HMmwMpNtoiYk1QDMVjV3HLoYMd1PTKEkJhJT1z

Public key:

045a5f526dfe5d5995bf95f1229e70e21818190883c40ab3590458476ad34aaae5 9bc772b98a587035b452638b59238e2a39e954b43ab7a4f32408664d36ec1575

Address: 133GT5661q8RuSKrrv8q2Pb4RwSpUTQU1Z

Keys example

Private key:

5JXesisRRU2Z7HMmwMpNtoiYk1QDMVjV3HLoYMd1PTKEkJhJT1z

Public key:

045a5f526dfe5d5995bf95f1229e70e21818190883c40ab3590458476ad34aaae5 9bc772b98a587035b452638b59238e2a39e954b43ab7a4f32408664d36ec1575

Address: 133GT5661q8RuSKrrv8q2Pb4RwSpUTQU1Z

Keys example

Private key:

5JXesisRRU2Z7HMmwMpNtoiYk1QDMVjV3HLoYMd1PTKEkJhJT1z

Public key:

045a5f526dfe5d5995bf95f1229e70e21818190883c40ab3590458476ad34aaae5 9bc772b98a587035b452638b59238e2a39e954b43ab7a4f32408664d36ec1575

Transactions

- The basic structure in bitcoin is a **transaction** (tx)
- A transaction transfers money from somebody to somebody else

Public Transactions

- All transactions are published!
- Everybody can see all transactions
- Users create a new address whenever they receive bitcoin
- **Reusing** addresses would be **bad** for **privacy**

The transaction graph

- Payments are done through **linking** transaction nodes
- Money is a chain of transactions

Unspent money

• Spendable money are **outgoing unlinked edges**

unspent transaction outputs - utxo

How do I ask for money?

- I generate a private key and its corresponding public key and address
- I send the address to the payer, e.g. through chat
- I watch the network for a transaction that pays me

How do I ask for money?

- I generate a private key and its corresponding public key and address
- I send the address to the payer, e.g. through chat
- I watch the network for a transaction that pays me

What money do I own?

- The ones that are still in the UTXO, thus are still unspent
 Otherwise I have transferred ownership to someone else
- On the outgoing edge there is a **public** key for which I hold the **private** key
- To calculate my balance, I sum the outgoing values

How do I spend money?

- I find a transaction that has a **UTXO** of which I am the **owner**
- I create a **new transaction**
- With one incoming and one outgoing edge
- I connect the **incoming edge** of the **new** transaction with the **old UTXO**
- Now the old UTXO is not a UTXO anymore it was just spent
- The outgoing edge of the new tx is unconnected it is the new UTXO
- I specify the **value** and the **owner** (address) of the new outgoing edge

No one else can forge this signature

Transaction broadcasting

- **Broadcast**: When I create a transaction, I send it to all my neighbours
- **Relay**: When I receive a transaction from a neighbour, I check if it is valid an then send it to the rest of my neighbours
- In a few moments, the whole network learns about a new transaction

One transaction – many inputs

• I can spend money from many UTXOs in one transaction

One transaction – many outputs

• I can pay multiple recipients with one transaction

One transaction – many outputs

- ... or keep **change** in case of a small transaction
- I give change to myself, not the seller

Kirchhoff's Law

$\forall tx \in txs:$ $\sum_{i \in in(tx)} w(i) \geq \sum_{o \in out(tx)} w(o)$
Kirchhoff's Law

Transaction validity

- To ensure the validity of a newly received transaction
- I already know some **valid** transactions with UTXOs
- I verify Kirchhoff's law
- I verify the digital signature
- I verify that the inputs connect to already known **valid UTXOs**
 - $^{\rm O}$ $\,$ This verifies that money is spent **exactly one time**

Wallet

- A bitcoin **private key set**
- Usually an application
- Mobile or Desktop

Desktop wallet - Electrum

				Electrum 2	2.5.4 - default_wa	llet		
		History	Send	Receive	Addresses	Contacts	Console	
	Date	Description					Amount	Balance
V	2013-09-30 03:57						+2000.	2257.59289
V	2013-09-02 15:48						+257.59289	257.59289
V	2013-07-17 20:17						-1000.	0.
\checkmark	2013-07-17 19:51						+1000.	1000.
V	2013-07-05 12:51						-240.75443	0.
V	2013-07-05 12:43						-142.98671	240.75443
\checkmark	2013-06-28 20:40						+240.75443	383.74114
\checkmark	2013-05-27 13:17						+110.94938	142.98671
V	2013-05-27 11:58						+32.03733	32.03733
~	2013-05-09 01:33						-100.	0.
V	2013-04-21 20:06						+100.	100.
\checkmark	2012-11-09 21:13						-2328.65664	0.
\checkmark	2012-10-25 04:49						+2051.2	2328.65664
\checkmark	2012-10-10 23:14						-220.	277.45664
\checkmark	2012-10-10 20:32						+220.	497.45664
\checkmark	2012-10-10 18:58						-583.53221	277.45664
\checkmark	2012-10-10 18:49						+500.	860.98885
V	2012-10-10 17:27						-3060.	360.98885
\checkmark	2012-09-30 15:53						-1545.00547	3420.98885
V	2012-09-23 00:07						+1545.00547	4965.99432
	2012 00 07 01-52						+277.45664	3420.98885
Balance: 2.62604 mBTC							🔒 🐝 😑 🍃	

Mobile wallet - Android

				³Gal 🥻 10:51				
Bitco	oin		SEND COINS 🖉 ADDRESS BOOK					
	BTC 1 . ≈ EUR55	1163 5.7050	Your Bitcoin Address: 1KGe NiDw zH5N rdwN ETj3 hQEx wr5H MN9e FW					
	balance	67.90 65	Received Both Sent	+ 0.0050				
CNY	rate balance	416.78		+ 0.0030				
		465.26 53	• Apr 5 \leftarrow Beer with Lisa	+ 0.00 50				
DKK	rate	328.56	● Apr 5 → 1Q4H8CY4FpnJ93SPbdz4Cqgv714KXae	- 3.50 05				
	balance	366.78 24	Apr 4 \rightarrow Burger @ room 77	- 0.07 54				
EUR	rate	49.90						
(default)	balance	55.70 50	● Apr 4 ← 1G9Hjz1JCUqnhNQMpxLhsVL6FD8Coo4.	+ 2.24 52				
GBP	rate	40.74	● Apr 4 ← Donation	+ 0.05				
	balance	45.47 94	● Apr 3 ← 1FUgOeguKnVFavXYoKwYB7g4YKXJ4RE	Kih + 0.05				
HKD	rate	506.94						
Use at your own risk. Read the <u>safety notes</u> .								

Double spending

- Two transactions that spend the same output are named **double spend**
- Kirchhoff's law holds for both transactions
- All signatures are valid

Double spending attack

- Eve buys shoes from Bob
- She simultaneously double spends to herself
- She takes the shoes and leaves
- Bob learns about the double spend later

The arrow of time

- We need to put transactions in some order
- We must be able to answer: Did tx A happen before tx B?
- The answer should be **common for everyone in the network**
- Global agreement on a common truth is named **consensus**
 - This is where the bitcoin novelty is

Block

- Contains many transactions
- It cannot contain double spends, that is txs that spend the same output
- Each transaction can appear **only once** in a block

Block

- The network is set to create **one block every 10 minutes**
- A newly created block contains the most recent transactions that did not exist in previous blocks
- Blocks are **broadcast** and **relayed** in the network, just like transactions
- The SHA256² of the block is the **block id**
- A transaction in a valid block is called **confirmed**

blockid = SHA256²

Blockchain

- Each block refers to its **previous** block
- It contains a pointer to the blockid of its parent
- A later block cannot contain a double spend of a previous one
- ...or a transaction that appeared in a previous block
- This connected list is called **blockchain**

Blockchain

- Each block refers to its **previous** block
- It contains a pointer to the blockid of its parent
- A later block cannot contain a double spend of a previous one
- ...or a transaction that appeared in a previous block
- This connected list is called **blockchain**

Blockchain

- Achieves consensus
- Tx A precedes tx B if A is contained in a previous block from B
- If we want to ensure that a transaction will not be double spent, we have to wait for it to be confirmed

Who creates blocks?

- Anybody can create a block
- The system is free for everybody
- Each block must contain a **proof of work SHA256**²
- The proof of work has such a **difficulty** that the **entire network** create **1 block every 10 minutes on expectation**

E(block generation time) = 10 min

Mining

- The process of block creation is called **mining**
- There are **many miners** who try to mine blocks
- Each miner has a **small probability** to extract a particular block
- When a miner successfully mines a block, she **broadcasts** it
- The rest of the nodes **relay** it

Bitcoin proof of work

SHA256²(txs || nonce || parent-blockid) < ε

Genesis block

- The **first** block in the blockchain is the genesis block
- It is hard-coded in the bitcoin software
- Every valid blockchain begins from the genesis
 - \circ It is the **base** of the **induction** for block validity confirmation

Genesis block

- Contains the text "The Times 03/Jan/2009 Chancellor on brink of second bailout for banks"
- This proves that the block was created **on or after** 3 January 2009
- We also know that it was made **on or before** 3 January 2009 because we observed it on the network
- Thus it was made **on** 3 January 2009

Blockchain forks

- Often two valid blocks may be mined simultaneously
- This creates a **blockchain fork**

Blockchain fork

- A blockchain fork is a problem because it prevents us from maintaining the arrow of time
- We have the same problem as ordering transactions
- Which of the two blocks is **the most recent valid block**?
- What happens if two rival blocks contain **double spends**?

Algorithm for resolving rival blockchains

- We observe two rival blockchains on the network
- The valid blockchain is the one with the **maximum height**
- If the two blockchains have the **same height**, we choose one at **random**.
- The chosen block is the one on top of which we mine and/or trust for transaction confirmation

Double spending

• To successfully double spend, I have to create a malicious **parallel blockchain** equal or longer than the honest one

Double spending difficulty

- Double spending requires **great computational power**
- The malicious actor must control more computational power than the rest of the network
- Otherwise the probability of catching up with the honest blockchain falls **exponentially** with the length of the honest blockchain
- He can achieve it if he controls more than 50% of all the computational power in the world
- This is called a **51%-attack**

What can a malicious miner achieve?

- Can he double spend?
- Can he prevent money from being spent?
 ?
- Can he spend our money?

What can a malicious miner achieve?

- Can he double spend?
 - Yes he makes a parallel blockchain containing the malicious transaction
- Can he prevent money from being spent?
 - $^{\circ}$ Yes he makes a parallel blockchain that does not contain the undesired transaction
- Can he spend our money?
 - No he doesn't have our private keys!

Mining incentives

• A miner is rewarded in 2 ways:

1. With all the remaining money from the transactions she confirms:

$$fees = \sum_{tx \in block} \begin{bmatrix} \sum_{i \in in(tx)} w(i) - \sum_{i \in o \in out(tx)} w(o) \end{bmatrix}$$

Mining incentives

• A miner is rewarded in 2 ways:

2. With **one** coinbase transaction she is allowed to put in the block with a value of 12.5 BTC

Mining incentives

• A miner is rewarded in 2 ways:

2. With **one** coinbase transaction she is allowed to put in the block with a value of 12.5 BTC

Coinbase transaction

- A coinbase transaction is the only one that can have **an incoming edge with no beginning**
- It is the **induction base** for transactions validity confirmation
- **Exactly one** coinbase transaction is allowed in each block
- The coinbase value must be 12.5 BTC
- This is the **only** way to create bitcoin

Bitcoin value

- Extreme variance
- 23/11/2017: **1** BTC = £6,130
- 2016: 1 BTC = £590
- Max 2013: 1 BTC = £750
- Min 2013: 1 BTC = £45
- 2012: 1 BTC = £6
- 2010: 1 BTC = £0.05
- 22/5/2010: First purchase with bitcoin

22 May 2010: One pizza for 10,000 BTC

Bitcoin Charts

coinmarketcap.com
What we learned

- What is bitcoin
- Addresses, keys
- Transactions, change
- Bitcoin graph, edges, nodes, values, owners, utxo, coinbase
- Wallets
- Mining, consensus, blockchain, genesis
- Proof-of-work, difficulty, confirmations, rewards, fees
- Bitcoin value