
Web security: web basics

Myrto Arapinis
School of Informatics

University of Edinburgh

November 13, 2017

1 / 14

Web applications

HTTP←−−−−→ ←−→

Client Server Database
(HTML, JavaScript) (PHP) (SQL)

2 / 14

URLs

Protocol://host/FilePath?argt1=value1&argt2=value2

I Protocol: protocol to access the resource (http, https,
ftp, . . .)

I host: name or IP address of the computer the resource is on

I FilePath: path to the resource on the host

I Resources can be static (file.html) or dynamic (do.php)

I URLs for dynamic content usually include arguments to pass
to the process (argt1, argt2)

3 / 14

HTTP requests

GET request

GET HTTP/1.1

Host: www.inf.ed.ac.uk

User-Agent: Mozilla/5.0

(X11; Ubuntu; Linux x86 64; rv:29.0)

Gecko/20100101 Firefox/29.0

Accept: text/html,application/xhtml+xml,

application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

4 / 14

HTTP responses

HTTP/1.1 200 OK

Server: Apache

Cache-control: private

Set-Cookie: JSESSIONID=B7E2479EC28064DF84DF4E3DBEE9C7DF;

Path=/

Content-Type: text/html;charset=UTF-8

Date: Wed, 18 Mar 2015 22:36:30 GMT

Connection: keep-alive

Set-Cookie: NSC xxx.fe.bd.vl-xd=ffffffffc3a035be45525d5f4f58455e445a4a423660;path=/

Content-Encoding: gzip

Content-Length: 4162

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/

xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">

<head>

<title> Informatics home | School of Informatics </title>

...

5 / 14

How is state managed in HTTP sessions

HTTP is stateless: when a client sends a request, the server sends
back a response but the server does not hold any information on
previous requests

The problem: in most web applications a client has to access
various pages before completing a specific task and the client state
should be kept along all those pages. How does the server know if
two requests come from the same browser?
Example: the server doesn’t require a user to log at each HTTP
request

The idea: insert some token into the page when it is requested
and get that token passed back with the next request

Two main approaches to maintain a session between a web client
and a web server

I use hidden fields

I use cookies
6 / 14

Hidden fields (1)

The principle

Include an HTML form with a hidden field containing a session ID
in all the HTML pages sent to the client. This hidden field will be
returned back to the server in the request.

Example: the web server can send a hidden HTML form field along
with a unique session ID as follows:

<input type="hidden" name="sessionid" value="12345">

When the form is submitted, the specified name and value are
automatically included in the GET or POST data.

7 / 14

Hidden fields (2)

Disadvantage of this approach

I it requires careful and tedious programming effort, as all the
pages have to be dynamically generated to include this hidden
field

I session ends as soon as the browser is closed

Advantage of this approach

All browser supports HTML forms

8 / 14

Cookies (1)

I A cookie is a small piece of information that a server sends to
a browser and stored inside the browser. A cookie has a name
and a value, and other attribute such as domain and path,
expiration date, version number, and comments

I The browser automatically includes the cookie in all its
subsequent requests to the originating host of the cookie

I Cookies are only sent back by the browser to their originating
host and not any other hosts. Domain and path specify which
server (and path) to return the cookie

I A server can set the cookie’s value to uniquely identify a
client. Hence, cookies are commonly used for session and user
management

I Cookies can be used to hold personalized information, or to
help in on-line sales/service (e.g. shopping cart). . .

Main limitation

Users may disable cookies in their browser

9 / 14

Cookies (1)

I A cookie is a small piece of information that a server sends to
a browser and stored inside the browser. A cookie has a name
and a value, and other attribute such as domain and path,
expiration date, version number, and comments

I The browser automatically includes the cookie in all its
subsequent requests to the originating host of the cookie

I Cookies are only sent back by the browser to their originating
host and not any other hosts. Domain and path specify which
server (and path) to return the cookie

I A server can set the cookie’s value to uniquely identify a
client. Hence, cookies are commonly used for session and user
management

I Cookies can be used to hold personalized information, or to
help in on-line sales/service (e.g. shopping cart). . .

Main limitation

Users may disable cookies in their browser

9 / 14

Cookies (1)

I A cookie is a small piece of information that a server sends to
a browser and stored inside the browser. A cookie has a name
and a value, and other attribute such as domain and path,
expiration date, version number, and comments

I The browser automatically includes the cookie in all its
subsequent requests to the originating host of the cookie

I Cookies are only sent back by the browser to their originating
host and not any other hosts. Domain and path specify which
server (and path) to return the cookie

I A server can set the cookie’s value to uniquely identify a
client. Hence, cookies are commonly used for session and user
management

I Cookies can be used to hold personalized information, or to
help in on-line sales/service (e.g. shopping cart). . .

Main limitation

Users may disable cookies in their browser

9 / 14

Cookies (1)

I A cookie is a small piece of information that a server sends to
a browser and stored inside the browser. A cookie has a name
and a value, and other attribute such as domain and path,
expiration date, version number, and comments

I The browser automatically includes the cookie in all its
subsequent requests to the originating host of the cookie

I Cookies are only sent back by the browser to their originating
host and not any other hosts. Domain and path specify which
server (and path) to return the cookie

I A server can set the cookie’s value to uniquely identify a
client. Hence, cookies are commonly used for session and user
management

I Cookies can be used to hold personalized information, or to
help in on-line sales/service (e.g. shopping cart). . .

Main limitation

Users may disable cookies in their browser

9 / 14

Cookies (1)

I A cookie is a small piece of information that a server sends to
a browser and stored inside the browser. A cookie has a name
and a value, and other attribute such as domain and path,
expiration date, version number, and comments

I The browser automatically includes the cookie in all its
subsequent requests to the originating host of the cookie

I Cookies are only sent back by the browser to their originating
host and not any other hosts. Domain and path specify which
server (and path) to return the cookie

I A server can set the cookie’s value to uniquely identify a
client. Hence, cookies are commonly used for session and user
management

I Cookies can be used to hold personalized information, or to
help in on-line sales/service (e.g. shopping cart). . .

Main limitation

Users may disable cookies in their browser

9 / 14

Cookies (1)

I A cookie is a small piece of information that a server sends to
a browser and stored inside the browser. A cookie has a name
and a value, and other attribute such as domain and path,
expiration date, version number, and comments

I The browser automatically includes the cookie in all its
subsequent requests to the originating host of the cookie

I Cookies are only sent back by the browser to their originating
host and not any other hosts. Domain and path specify which
server (and path) to return the cookie

I A server can set the cookie’s value to uniquely identify a
client. Hence, cookies are commonly used for session and user
management

I Cookies can be used to hold personalized information, or to
help in on-line sales/service (e.g. shopping cart). . .

Main limitation

Users may disable cookies in their browser
9 / 14

Cookies (2)

GET...−−−−−−−−−−−−−−−→
...SET COOKIE:name=value...←−−−−−−−−−−−−−−−−−

A cookie has several attributes:
Set-Cookie: value[; expires=date][; domain=domain]

[; path=path][; secure][; HttpOnly]

expires : (whentobedeleted)
domain : (whentosend)
path : (whentosend)

}
scope

secure : (onlyoverSSL)
HttpOnly : (onlyoverHTTP)

10 / 14

Web security: security goals

11 / 14

Security goals

Web applications should provide the same security guarantees as
those required for standalone applications

1. visiting evil.com should not infect my computer with
malware, or read and write files
Defenses: Javascript sandboxed, avoid bugs in browser code,
privilege separation, etc

2. visiting evil.com should not compromise my sessions with
gmail.com

Defenses: same-origin policy – each website is isolated from
all other websites

3. sensitive data stored on gmail.com should be protected

12 / 14

Threat model

Web attacker

I controls evil.com

I has valid SSL/TLS certificates for evil.com

I victim user visits evil.com

Network attacker

I controls the whole network: can intercept, craft, send
messages

A Web attacker is weaker than a Network attacker

13 / 14

OWASP TOP 10 Web security flaws (2013)

Injection flaws, such as SQL, OS, and LDAP injection occur when untrusted data is sent to an
interpreter as part of a command or query. The attacker’s hostile data can trick the interpreter
into executing unintended commands or accessing data without proper authorization.

A1 – Injection

Application functions related to authentication and session management are often not
implemented correctly, allowing attackers to compromise passwords, keys, or session tokens, or
to exploit other implementation flaws to assume other users’ identities.

A2 – Broken
Authentication and

Session
Management

XSS flaws occur whenever an application takes untrusted data and sends it to a web browser
without proper validation or escaping. XSS allows attackers to execute scripts in the victim’s
browser which can hijack user sessions, deface web sites, or redirect the user to malicious sites.

A3 – Cross-Site
Scripting (XSS)

A direct object reference occurs when a developer exposes a reference to an internal
implementation object, such as a file, directory, or database key. Without an access control check
or other protection, attackers can manipulate these references to access unauthorized data.

A4 – Insecure
Direct Object

References

Good security requires having a secure configuration defined and deployed for the application,
frameworks, application server, web server, database server, and platform. Secure settings
should be defined, implemented, and maintained, as defaults are often insecure. Additionally,
software should be kept up to date.

A5 – Security
Misconfiguration

Many web applications do not properly protect sensitive data, such as credit cards, tax IDs, and
authentication credentials. Attackers may steal or modify such weakly protected data to conduct
credit card fraud, identity theft, or other crimes. Sensitive data deserves extra protection such as
encryption at rest or in transit, as well as special precautions when exchanged with the browser.

A6 – Sensitive Data
Exposure

Most web applications verify function level access rights before making that functionality visible
in the UI. However, applications need to perform the same access control checks on the server
when each function is accessed. If requests are not verified, attackers will be able to forge
requests in order to access functionality without proper authorization.

A7 – Missing
Function Level
Access Control

A CSRF attack forces a logged-on victim’s browser to send a forged HTTP request, including the
victim’s session cookie and any other automatically included authentication information, to a
vulnerable web application. This allows the attacker to force the victim’s browser to generate
requests the vulnerable application thinks are legitimate requests from the victim.

A8 - Cross-Site
Request Forgery

(CSRF)

Components, such as libraries, frameworks, and other software modules, almost always run with
full privileges. If a vulnerable component is exploited, such an attack can facilitate serious data
loss or server takeover. Applications using components with known vulnerabilities may
undermine application defenses and enable a range of possible attacks and impacts.

A9 - Using
Components with

Known
Vulnerabilities

Web applications frequently redirect and forward users to other pages and websites, and use
untrusted data to determine the destination pages. Without proper validation, attackers can
redirect victims to phishing or malware sites, or use forwards to access unauthorized pages.

A10 – Unvalidated
Redirects and

Forwards

OWASP Top 10 Application
Security Risks – 2013 T10

14 / 14

