Digital signatures

Myrto Arapinis School of Informatics University of Edinburgh

October 16, 2017

イロン イロン イヨン イヨン 三日

1/8

Data integrity and origin authenticity in the public-key setting

- key generation algorithm: $G : \rightarrow \mathcal{K} \times \mathcal{K}$
- signing algorithm $S : \mathcal{K} \times \mathcal{M} \to \mathcal{S}$
- verification algorithm $V : \mathcal{K} \times \mathcal{M} \times \mathcal{S} \rightarrow \{\top, \bot\}$
- ▶ s.t. $\forall (sk, vk) \in G$, and $\forall m \in M$, $V(vk, m, S(sk, m)) = \top$

Advantages of digital signatures over MACs

MACs

- are not publicly verifiable (and so not transferable)
 No one else, except Bob, can verify t.
- do not provide non-repudiation t is not bound to Alice's identity only. Alice could later claim she didn't compute t herself. It could very well have been Bob since he also knows the key k.

Advantages of digital signatures over MACs

Digital signatures

- are publicly verifiable anyone can verify a signature
- are tansferable due to public verifiability
- provide non-repudiation if Alice signs a document with her secret key, she cannot deny it later

A good digital signature schemes should satisfy existential unforgeabitliy.

Existential unforgeability

- Given $(m_1, S(sk, m_1)), \ldots, (m_n, S(sk, m_n))$ (where m_1, \ldots, m_n chosen by the adversary)
- It should be hard to computer a valid pair (m, S(sk, m)) without knowing sk for any m ∉ {m₁,..., m_n}

•
$$G_{RSA}() = (pk, sk)$$

where
$$pk = (N, e)$$
 and $sk = (N, d)$
and $N = p \cdot q$ with p, q random primes
and $e, d \in \mathbb{Z}$ st. $e \cdot d \equiv 1 \pmod{\phi(N)}$

$$\bullet \ G_{RSA}() = (pk, sk)$$

where
$$pk = (N, e)$$
 and $sk = (N, d)$
and $N = p \cdot q$ with p, q random primes
and $e, d \in \mathbb{Z}$ st. $e \cdot d \equiv 1 \pmod{\phi(N)}$

•
$$\mathcal{M} = \mathcal{C} = \mathbb{Z}_N$$

►
$$G_{RSA}() = (pk, sk)$$
 where $pk = (N, e)$ and $sk = (N, d)$
and $N = p \cdot q$ with p, q random primes
and $e, d \in \mathbb{Z}$ st. $e \cdot d \equiv 1 \pmod{\phi(N)}$

Signing:
$$S_{RSA}(sk, x) = (x, x^d \pmod{N})$$
 where $pk = (N, e)$

►
$$G_{RSA}() = (pk, sk)$$
 where $pk = (N, e)$ and $sk = (N, d)$
and $N = p \cdot q$ with p, q random primes
and $e, d \in \mathbb{Z}$ st. $e \cdot d \equiv 1 \pmod{\phi(N)}$

► Signing:
$$S_{RSA}(sk, x) = (x, x^d \pmod{N})$$
 where $pk = (N, e)$

► Verifying:
$$V_{RSA}(pk, m, x) = \begin{cases} \top & \text{if } m = x^e \pmod{N} \\ ⊥ & \text{otherwise} \end{cases}$$

where $sk = (N, d)$

►
$$G_{RSA}() = (pk, sk)$$
 where $pk = (N, e)$ and $sk = (N, d)$
and $N = p \cdot q$ with p, q random primes
and $e, d \in \mathbb{Z}$ st. $e \cdot d \equiv 1 \pmod{\phi(N)}$

- ► Signing: $S_{RSA}(sk, x) = (x, x^d \pmod{N})$ where pk = (N, e)
- ► Verifying: $V_{RSA}(pk, m, x) = \begin{cases} \top & \text{if } m = x^e \pmod{N} \\ \bot & \text{otherwise} \end{cases}$ where sk = (N, d)
- ▶ st \forall (*pk*, *sk*) = *G*_{*RSA*}(), \forall *x*, *V*_{*RSA*}(*pk*, *x*, *S*_{*RSA*}(*sk*, *x*)) = \top

►
$$G_{RSA}() = (pk, sk)$$
 where $pk = (N, e)$ and $sk = (N, d)$
and $N = p \cdot q$ with p, q random primes
and $e, d \in \mathbb{Z}$ st. $e \cdot d \equiv 1 \pmod{\phi(N)}$

- ► Signing: $S_{RSA}(sk, x) = (x, x^d \pmod{N})$ where pk = (N, e)
- ► Verifying: $V_{RSA}(pk, m, x) = \begin{cases} \top & \text{if } m = x^e \pmod{N} \\ \bot & \text{otherwise} \end{cases}$ where sk = (N, d)
- St ∀(pk, sk) = G_{RSA}(), ∀x, V_{RSA}(pk, x, S_{RSA}(sk, x)) = ⊤ <u>Proof</u>: exactly as proof of consistency of RSA encryption/decryption

Textbook RSA sinatures are not secure

The "textbook RSA sinature" scheme does not provide existential unforgeabitlity

- Suppose Eve has two valid signatures $\sigma_1 = M_1^d \mod n$ and $\sigma_2 = M_2^d \mod n$ from Bob, on messages M_1 and M_2 .
- Then Eve can exploit the homomorphic properties of RSA and produce a new signaure

Textbook RSA sinatures are not secure

The "textbook RSA sinature" scheme does not provide existential unforgeabitlity

- Suppose Eve has two valid signatures $\sigma_1 = M_1^d \mod n$ and $\sigma_2 = M_2^d \mod n$ from Bob, on messages M_1 and M_2 .
- Then Eve can exploit the homomorphic properties of RSA and produce a new signaure

$$\sigma = \sigma_1 \cdot \sigma_2 \mod n = M_1^d \cdot M_2^d \mod n = (M_1 \cdot M_2)^d \mod n$$

which is a valid signature from Bob on message $M_1 \cdot M_2$.

Solution

Before computing the RSA function, apply a hash function H.

• Signing: $S_{RSA}(sk, x) = (x, H(x)^d \pmod{N})$

・ロ・・(型・・ヨ・・ヨ・ ヨ・ のへで)
8/8

Solution

Before computing the RSA function, apply a hash function H.

- Signing: $S_{RSA}(sk, x) = (x, H(x)^d \pmod{N})$
- ► Verifying: $V_{RSA}(pk, m, x) = \begin{cases} \top & \text{if } H(m) = x^e \pmod{N} \\ \bot & \text{otherwise} \end{cases}$