Cryptographic hash functions and MACs

Myrto Arapinis
School of Informatics
University of Edinburgh

October 05, 2017

21

Introduction

Encryption = confidentiality against eavesdropping

21

Introduction

Encryption = confidentiality against eavesdropping

What about authenticity and integrity against an active attacker?
— cryptographic hash functions and Message authentication
codes

— this lecture

21

One-way functions (OWFs)

A OWEF is a function that is easy to compute but hard to invert:

Definition (One-way)
A function f is a one-way function if for all y there is no efficient
algorithm which can compute x such that f(x) =y

21

One-way functions (OWFs)

A OWEF is a function that is easy to compute but hard to invert:

Definition (One-way)
A function f is a one-way function if for all y there is no efficient
algorithm which can compute x such that f(x) =y

Constant functions ARE NOT OWF:
The successor function in N IS NOT a OWF
given succ(n) it is easy to retrieve n = succ(n) — 1

21

One-way functions (OWFs)

A OWEF is a function that is easy to compute but hard to invert:

Definition (One-way)
A function f is a one-way function if for all y there is no efficient
algorithm which can compute x such that f(x) =y

Constant functions ARE NOT OWF:
The successor function in N IS NOT a OWF
given succ(n) it is easy to retrieve n = succ(n) — 1

Multiplication of large primes IS a OWF:
integer factorization is a hard problem - given p x g (where p
and g are primes) it is hard to retrieve p and ¢

21

Collision-resistant functions (CRFs)

A function is a CRF if it is hard to find two messages that get
mapped to the same value threw this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm
that can find two messages m; and my such that f(my) = f(mo)

Collision-resistant functions (CRFs)

A function is a CRF if it is hard to find two messages that get
mapped to the same value threw this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm
that can find two messages m; and my such that f(my) = f(my)

Constant functions ARE NOT CRFs
for all my and myp, f(my) = f(my)

Collision-resistant functions (CRFs)

A function is a CRF if it is hard to find two messages that get
mapped to the same value threw this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm
that can find two messages m; and my such that f(my) = f(my)

Constant functions ARE NOT CRFs
for all my and myp, f(my) = f(my)

The successor function in N IS a CRF
the predecessor of a positive integer is unique

21

Collision-resistant functions (CRFs)

A function is a CRF if it is hard to find two messages that get
mapped to the same value threw this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm
that can find two messages m; and my such that f(my) = f(my)

Constant functions ARE NOT CRFs
for all my and myp, f(my) = f(my)

The successor function in N IS a CRF
the predecessor of a positive integer is unique

Multiplication of large primes IS a CRF:
every positive integer has a unique prime factorization

21

Cryptographic hash functions

A cryptographic hash function takes messages of arbitrary length
end returns a fixed-size bit string such that any change to the data
will (with very high probability) change the corresponding hash
value.

Definition (Cryptographic hash function)

A cryptographic hash function H: M — T is a function that
satisfies the following 4 properties:

> M| >>[T]
> it is easy to compute the hash value for any given message
> it is hard to retrieve a message from it hashed value (OWF)

> it is hard to find two different messages with the same hash
value (CRF)

Examples: MD4, MD5, SHA-1, SHA-256, Whirlpool, ...

5/21

Cryptographic hash functions: applications

» Commitments - Allow a participant to commit to a value v
by publishing the hash H(v) of this value, but revealing v only
later. Ex: electronic voting protocols, digital signatures, ...

6/21

Cryptographic hash functions: applications

» Commitments - Allow a participant to commit to a value v
by publishing the hash H(v) of this value, but revealing v only
later. Ex: electronic voting protocols, digital signatures, ...

» File integrity - Hashes are sometimes posted along with files
on “read-only” spaces to allow verification of integrity of the
files. Ex: SHA-256 is used to authenticate Debian GNU/Linux
software packages

6/21

Cryptographic hash functions: applications

» Commitments - Allow a participant to commit to a value v
by publishing the hash H(v) of this value, but revealing v only
later. Ex: electronic voting protocols, digital signatures, ...

» File integrity - Hashes are sometimes posted along with files
on “read-only” spaces to allow verification of integrity of the
files. Ex: SHA-256 is used to authenticate Debian GNU/Linux
software packages

» Password verification - Instead of storing passwords in
cleartext, only the hash digest of each password is stored. To
authenticate a user, the password presented by the user is
hashed and compared with the stored hash.

6/21

Cryptographic hash functions: applications

» Commitments - Allow a participant to commit to a value v
by publishing the hash H(v) of this value, but revealing v only
later. Ex: electronic voting protocols, digital signatures, ...

» File integrity - Hashes are sometimes posted along with files
on “read-only” spaces to allow verification of integrity of the
files. Ex: SHA-256 is used to authenticate Debian GNU/Linux
software packages

» Password verification - Instead of storing passwords in
cleartext, only the hash digest of each password is stored. To
authenticate a user, the password presented by the user is
hashed and compared with the stored hash.

» Key derivation - Derive new keys or passwords from a single,
secure key or password.

6/21

Cryptographic hash functions: applications

» Commitments - Allow a participant to commit to a value v
by publishing the hash H(v) of this value, but revealing v only
later. Ex: electronic voting protocols, digital signatures, ...

» File integrity - Hashes are sometimes posted along with files
on “read-only” spaces to allow verification of integrity of the
files. Ex: SHA-256 is used to authenticate Debian GNU/Linux
software packages

» Password verification - Instead of storing passwords in
cleartext, only the hash digest of each password is stored. To
authenticate a user, the password presented by the user is
hashed and compared with the stored hash.

» Key derivation - Derive new keys or passwords from a single,
secure key or password.

» Building block of other crypto primitives - Used to build
MACs, block ciphers, PRG, ...

6/21

Collision resistance and the birthday attack

Theorem
Let H: M — {0,1}" be a cryptographic hash function
(M| >>2")
Generic algorithm to find a collision in time O(2"/?) hashes:
1. Choose 2"/2 random messages in M: my, ..., Moy)2
2. Fori=1,...,2"2 compute tj = H(m;)
3. If there exists a collision (3i,j. t; # t;)
then return (t;, tj)
else go back to 1

Birthday paradox Let ry,...,r, € {1,..., N} be independent
variables. For n=1.2x VN, Pr(3i # j. ri=1r;) > 3

= the expected number of iteration is 2

= running time O(2"/?)

= Cryptographic function used in new projects should have an
output size n > 256!

~

21

The Merkle-Damgard construction

3

m, || PB

» Compression function: h: T x X — T

» PB: 1000...0||mes-len (add extra block if needed)

Let H be built using the MD construction to the compression
function h. If H admits a collision, so does h.

Example of MD constructions: MD5, SHA-1, SHA-2, ...

LIS
8/21

Compression functions from block ciphers

Let E: K x{0,1}" — {0,1}" be a block cipher

21

Compression functions from block ciphers

Let E: K x{0,1}" — {0,1}" be a block cipher

Hy T__ZQ T Has

Davies-Meyer

21

Compression functions from block ciphers

Let E: K x{0,1}" — {0,1}" be a block cipher

m\
[L,
H; N Hiaq H Hivy

Davies-Meyer Miyaguchi-Preneel

9/21

Example of cryptographic hash function: SHA-256

» Structure: Merkle-Damgard

» Compression function: Davies-Meyer
» Bloc cipher: SHACAL-2

256-bit block

et SHACAL-2 g

256-bit block

10/21

Message Authentication Codes (MACs)

Myrto Arapinis
School of Informatics
University of Edinburgh

October 11, 2016

11/21

Goal: message integrity

>

Generate tag Verify tag
t— MDC(m) V(m,t)=“ye8”?

12/21

Goal: message integrity

k

llii%ll

Generate tag
t — S(k,m)

k
>
Verify tag

V(k,m,t)=“yes”?

A MAC is a pair of algorithms (S, V) defined over (K, M, T):

> S KxM—=T

» VKX MxT —={T,L}
» Consistency: V(k,m,S(k,m))=T

and such that

» It is hard to computer a valid pair (m, S(k, m)) without

knowing k

13/21

File system protection

» At installation time

t,; = S(k, F;)

k derived from user password

» reboot to clean OS

» To check for virus file tampering/alteration:
» supply password

» any file modification will be detected

]

Qe
14 /21

Block ciphers and message integrity

5/21

Block ciphers and message integrity

Let (E, D) be a block cipher. We build a MAC (S, V) using (E, D)
as follows:
» S(k,m) = E(k, m)
» V(k,m,t) = if m= D(k,t)
then return T
else return L

15/21

Block ciphers and message integrity

Let (E, D) be a block cipher. We build a MAC (S, V) using (E, D)
as follows:
» S(k,m) = E(k, m)
» V(k,m,t) = if m= D(k,t)
then return T
else return L

But: block ciphers can usually process only 128 or 256 bits

15/21

Block ciphers and message integrity

Let (E, D) be a block cipher. We build a MAC (S, V) using (E, D)
as follows:
» S(k,m) = E(k, m)
» V(k,m,t) = if m= D(k,t)
then return T
else return L

But: block ciphers can usually process only 128 or 256 bits

Our goal now: construct MACs for long messages

15/21

ECBC-MAC

» E: K x{0,1}" — {0,1}" a block cipher
» ECBC-MAC : K? x {0,1}* — {0,1}"

) S
— the last encryption is crucial to avoid forgeries!!

Ex: 802.11i uses AES based ECBC-MAC

(details on the board)
=} F = = = DA
16 /21

PMAC

P(Kz, 0)

P(Kz, 2)

P(K,,30) ‘E’

P

» E: K x{0,1}" — {0,1}" a block cipher
» P: K xN—{0,1}" any easy to compute function
» PMAC : K? x {0,1}* — {0,1}"

[m]

=

DA
17/21

HMAC

MAC built from cryptographic hash functions

HMAC (k, m) = H(k @ OP||H(k & IP||m))
IP, OP: publicly known padding constants

k XOR IP

my

m,

k XOR OP

Ex: SSL, IPsec, SSH, ...

DA
18/21

Authenticated encryption

Myrto Arapinis
School of Informatics
University of Edinburgh

October 11, 2016

19/21

Plain encryption is malleable

Goal
Simultaneously provide data confidentiality, integrity and

authenticity
~ decryption combined with integrity verification in one step

» The decryption algorithm never fails
» Changing one bit of the i*" block of the ciphertext
» CBC decryption: will affect last blocks after the i*h of the
plaintext
» ECB decryption: will only the it block of the plaintext
» CTR decryption: will only affect one bit of the i*" block of the
plaintext

Decryption should fail if a ciphertext was not computed using the
key

20/21

Encrypt-then-MAC

1. Always compute the MACs on the ciphertext, never on the
plaintext

2. Use two different keys, one for encryption (Kg) and one for
the MAC (Ku)

Encryption Decryption
1. C+ Epes(Ke, M) 1. if T = HMAC — SHA(K, C)
2. T + HMAC-SHA(Kwm, C) 2. then return Dags(Ky, C)
3. return C||T 3. else return L

Do not:

» Encrypt-and-MAC: Eags(Ke, M)||HMAC-SHA(Ku, M)
» MAC-then-Encrypt: Eags(Ke, M||HMAC-SHA(Kp, M))

21/21

