Cryptographic hash functions and MACs

Myrto Arapinis School of Informatics University of Edinburgh

October 05, 2017

1/21

 $\mathsf{Encryption} \Rightarrow \mathsf{confidentiality} \text{ against eavesdropping}$

 ${\sf Encryption} \Rightarrow {\sf confidentiality} \ {\sf against} \ {\sf eavesdropping}$

What about authenticity and integrity against an active attacker? \longrightarrow cryptographic hash functions and Message authentication codes

 \longrightarrow this lecture

A OWF is a function that is easy to compute but hard to invert:

Definition (One-way)

A function f is a one-way function if for all y there is no efficient algorithm which can compute x such that f(x) = y

A OWF is a function that is easy to compute but hard to invert:

Definition (One-way)

A function f is a one-way function if for all y there is no efficient algorithm which can compute x such that f(x) = y

Constant functions ARE NOT OWF: The successor function in \mathbb{N} IS NOT a OWF given succ(n) it is easy to retrieve n = succ(n) - 1 A OWF is a function that is easy to compute but hard to invert:

Definition (One-way)

A function f is a one-way function if for all y there is no efficient algorithm which can compute x such that f(x) = y

Constant functions ARE NOT OWF: The successor function in \mathbb{N} IS NOT a OWF given succ(n) it is easy to retrieve n = succ(n) - 1

Multiplication of large primes IS a OWF: integer factorization is a hard problem - given $p \times q$ (where p and q are primes) it is hard to retrieve p and q

A function is a CRF if it is hard to find two messages that get mapped to the same value threw this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm that can find two messages m_1 and m_2 such that $f(m_1) = f(m_2)$

A function is a CRF if it is hard to find two messages that get mapped to the same value threw this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm that can find two messages m_1 and m_2 such that $f(m_1) = f(m_2)$

Constant functions ARE NOT CRFs for all m_1 and m_2 , $f(m_1) = f(m_2)$

A function is a CRF if it is hard to find two messages that get mapped to the same value threw this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm that can find two messages m_1 and m_2 such that $f(m_1) = f(m_2)$

Constant functions ARE NOT CRFs for all m_1 and m_2 , $f(m_1) = f(m_2)$

The successor function in \mathbb{N} IS a CRF the predecessor of a positive integer is unique

A function is a CRF if it is hard to find two messages that get mapped to the same value threw this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm that can find two messages m_1 and m_2 such that $f(m_1) = f(m_2)$

Constant functions ARE NOT CRFs for all m_1 and m_2 , $f(m_1) = f(m_2)$

The successor function in $\mathbb N$ IS a CRF the predecessor of a positive integer is unique

Multiplication of large primes IS a CRF: every positive integer has a unique prime factorization

Cryptographic hash functions

A cryptographic hash function takes messages of arbitrary length end returns a fixed-size bit string such that any change to the data will (with very high probability) change the corresponding hash value.

Definition (Cryptographic hash function)

A cryptographic hash function $H: \mathcal{M} \to \mathcal{T}$ is a function that satisfies the following 4 properties:

- $\blacktriangleright |\mathcal{M}| >> |\mathcal{T}|$
- it is easy to compute the hash value for any given message
- it is hard to retrieve a message from it hashed value (OWF)
- it is hard to find two different messages with the same hash value (CRF)

Examples: MD4, MD5, SHA-1, SHA-256, Whirlpool, ...

Commitments - Allow a participant to commit to a value v by publishing the hash H(v) of this value, but revealing v only later. Ex: electronic voting protocols, digital signatures, ...

- Commitments Allow a participant to commit to a value v by publishing the hash H(v) of this value, but revealing v only later. Ex: electronic voting protocols, digital signatures, ...
- File integrity Hashes are sometimes posted along with files on "read-only" spaces to allow verification of integrity of the files. Ex: SHA-256 is used to authenticate Debian GNU/Linux software packages

- Commitments Allow a participant to commit to a value v by publishing the hash H(v) of this value, but revealing v only later. Ex: electronic voting protocols, digital signatures, ...
- File integrity Hashes are sometimes posted along with files on "read-only" spaces to allow verification of integrity of the files. Ex: SHA-256 is used to authenticate Debian GNU/Linux software packages
- Password verification Instead of storing passwords in cleartext, only the hash digest of each password is stored. To authenticate a user, the password presented by the user is hashed and compared with the stored hash.

- Commitments Allow a participant to commit to a value v by publishing the hash H(v) of this value, but revealing v only later. Ex: electronic voting protocols, digital signatures, ...
- File integrity Hashes are sometimes posted along with files on "read-only" spaces to allow verification of integrity of the files. Ex: SHA-256 is used to authenticate Debian GNU/Linux software packages
- Password verification Instead of storing passwords in cleartext, only the hash digest of each password is stored. To authenticate a user, the password presented by the user is hashed and compared with the stored hash.
- Key derivation Derive new keys or passwords from a single, secure key or password.

- Commitments Allow a participant to commit to a value v by publishing the hash H(v) of this value, but revealing v only later. Ex: electronic voting protocols, digital signatures, ...
- File integrity Hashes are sometimes posted along with files on "read-only" spaces to allow verification of integrity of the files. Ex: SHA-256 is used to authenticate Debian GNU/Linux software packages
- Password verification Instead of storing passwords in cleartext, only the hash digest of each password is stored. To authenticate a user, the password presented by the user is hashed and compared with the stored hash.
- Key derivation Derive new keys or passwords from a single, secure key or password.
- Building block of other crypto primitives Used to build MACs, block ciphers, PRG, ...

Collision resistance and the birthday attack

Theorem

Let $H: \mathcal{M} \to \{0,1\}^n$ be a cryptographic hash function $(|\mathcal{M}| >> 2^n)$ Generic algorithm to find a collision in time $O(2^{n/2})$ hashes: 1. Choose $2^{n/2}$ random messages in $\mathcal{M}: m_1, \ldots, m_{2^{n/2}}$ 2. For $i = 1, \ldots, 2^{n/2}$ compute $t_i = H(m_i)$ 3. If there exists a collision $(\exists i \ i \ t_i \neq t_i)$

3. If there exists a collision $(\exists i, j. t_i \neq t_j)$ then return (t_i, t_j) else go back to 1

Birthday paradox Let $r_1, \ldots, r_n \in \{1, \ldots, N\}$ be independent variables. For $n = 1.2 \times \sqrt{N}$, $Pr(\exists i \neq j. r_i = r_j) \ge \frac{1}{2}$ \Rightarrow the expected number of iteration is 2 \Rightarrow running time $O(2^{n/2})$

⇒ Cryptographic function used in new projects should have an output size $n \ge 256!$

The Merkle-Damgard construction

- Compression function: $h: \mathcal{T} \times \mathcal{X} \to \mathcal{T}$
- ▶ PB: 1000...0||mes-len (add extra block if needed)

Theorem

Let H be built using the MD construction to the compression function h. If H admits a collision, so does h.

Example of MD constructions: MD5, SHA-1, SHA-2, ... ,

Compression functions from block ciphers

Let E : $\mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher

Compression functions from block ciphers

Let $E: \ \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher

Compression functions from block ciphers

Let E : $\mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher

Example of cryptographic hash function: SHA-256

- Structure: Merkle-Damgard
- Compression function: Davies-Meyer
- Bloc cipher: SHACAL-2

Message Authentication Codes (MACs)

Myrto Arapinis School of Informatics University of Edinburgh

October 11, 2016

A MAC is a pair of algorithms (S, V) defined over $(\mathcal{K}, \mathcal{M}, \mathcal{T})$:

•
$$S: \mathcal{K} \times \mathcal{M} \to \mathcal{T}$$

$$\blacktriangleright V: \mathcal{K} \times \mathcal{M} \times \mathcal{T} \to \{\top, \bot\}$$

• Consistency: V(k, m, S(k, m)) = T

and such that

It is hard to computer a valid pair (m, S(k, m)) without knowing k

File system protection

At installation time

k derived from user password

- To check for virus file tampering/alteration:
 - reboot to clean OS
 - supply password
 - any file modification will be detected

Block ciphers and message integrity

<ロト < 団ト < 臣ト < 臣ト 達 の Q (C) 15/21 Let (E, D) be a block cipher. We build a MAC (S, V) using (E, D) as follows:

Let (E, D) be a block cipher. We build a MAC (S, V) using (E, D) as follows:

•
$$S(k, m) = E(k, m)$$

• $V(k, m, t) = \text{if } m = D(k, t)$
then return \top
else return \bot

But: block ciphers can usually process only 128 or 256 bits

Let (E, D) be a block cipher. We build a MAC (S, V) using (E, D) as follows:

•
$$S(k,m) = E(k,m)$$

• $V(k,m,t) = \text{if } m = D(k,t)$
then return \top
else return \bot

But: block ciphers can usually process only 128 or 256 bits

Our goal now: construct MACs for long messages

- $E: \mathcal{K} \times \{0,1\}^n \rightarrow \{0,1\}^n$ a block cipher
- ECBC-MAC : $\mathcal{K}^2 \times \{0,1\}^* \to \{0,1\}^n$

 \rightarrow the last encryption is crucial to avoid forgeries!!

(details on the board)

(a)

Ex: 802.11i uses AES based ECBC-MAC

- $E: \mathcal{K} \times \{0,1\}^n \rightarrow \{0,1\}^n$ a block cipher
- $P: \ \mathcal{K} imes \mathbb{N} o \{0,1\}^n$ any easy to compute function
- $\blacktriangleright PMAC : \mathcal{K}^2 \times \{0,1\}^* \to \{0,1\}^n$

HMAC

MAC built from cryptographic hash functions

 $HMAC(k, m) = H(k \oplus OP||H(k \oplus IP||m))$

IP, OP: publicly known padding constants

Ex: SSL, IPsec, SSH, ...

Authenticated encryption

Myrto Arapinis School of Informatics University of Edinburgh

October 11, 2016

イロン イヨン イヨン イヨン 三日

19/21

Goal

Simultaneously provide data confidentiality, integrity and authenticity

 \leadsto decryption combined with integrity verification in one step

- The decryption algorithm never fails
- Changing one bit of the *ith* block of the ciphertext
 - CBC decryption: will affect last blocks after the *i^th* of the plaintext
 - ▶ ECB decryption: will only the *i*th block of the plaintext
 - CTR decryption: will only affect one bit of the *ith* block of the plaintext

Decryption should fail if a ciphertext was not computed using the key

- 1. Always compute the MACs on the ciphertext, never on the plaintext
- 2. Use two different keys, one for encryption (K_E) and one for the MAC (K_M)

Encryption

Decryption

- 1. $C \leftarrow E_{AES}(K_E, M)$
- 2. $T \leftarrow HMAC-SHA(K_M, C)$
- 3. return C||T

- 1. if $T = HMAC SHA(K_2, C)$
- 2. then return $D_{AES}(K_1, C)$
- 3. else return \perp

Do not:

- ► Encrypt-and-MAC: *E_{AES}*(*K_E*, *M*)||*HMAC-SHA*(*K_M*, *M*)
- MAC-then-Encrypt: $E_{AES}(K_E, M || HMAC-SHA(K_M, M))$