
Cryptographic hash functions and MACs

Myrto Arapinis
School of Informatics

University of Edinburgh

October 05, 2017

1 / 21

Introduction

Encryption ⇒ confidentiality against eavesdropping

What about authenticity and integrity against an active attacker?
−→ cryptographic hash functions and Message authentication
codes
−→ this lecture

2 / 21

Introduction

Encryption ⇒ confidentiality against eavesdropping

What about authenticity and integrity against an active attacker?
−→ cryptographic hash functions and Message authentication
codes
−→ this lecture

2 / 21

One-way functions (OWFs)

A OWF is a function that is easy to compute but hard to invert:

Definition (One-way)

A function f is a one-way function if for all y there is no efficient
algorithm which can compute x such that f (x) = y

Constant functions ARE NOT OWF:
The successor function in N IS NOT a OWF

given succ(n) it is easy to retrieve n = succ(n)− 1

Multiplication of large primes IS a OWF:
integer factorization is a hard problem - given p × q (where p
and q are primes) it is hard to retrieve p and q

3 / 21

One-way functions (OWFs)

A OWF is a function that is easy to compute but hard to invert:

Definition (One-way)

A function f is a one-way function if for all y there is no efficient
algorithm which can compute x such that f (x) = y

Constant functions ARE NOT OWF:
The successor function in N IS NOT a OWF

given succ(n) it is easy to retrieve n = succ(n)− 1

Multiplication of large primes IS a OWF:
integer factorization is a hard problem - given p × q (where p
and q are primes) it is hard to retrieve p and q

3 / 21

One-way functions (OWFs)

A OWF is a function that is easy to compute but hard to invert:

Definition (One-way)

A function f is a one-way function if for all y there is no efficient
algorithm which can compute x such that f (x) = y

Constant functions ARE NOT OWF:
The successor function in N IS NOT a OWF

given succ(n) it is easy to retrieve n = succ(n)− 1

Multiplication of large primes IS a OWF:
integer factorization is a hard problem - given p × q (where p
and q are primes) it is hard to retrieve p and q

3 / 21

Collision-resistant functions (CRFs)

A function is a CRF if it is hard to find two messages that get
mapped to the same value threw this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm
that can find two messages m1 and m2 such that f (m1) = f (m2)

Constant functions ARE NOT CRFs
for all m1 and m2, f (m1) = f (m2)

The successor function in N IS a CRF
the predecessor of a positive integer is unique

Multiplication of large primes IS a CRF:
every positive integer has a unique prime factorization

4 / 21

Collision-resistant functions (CRFs)

A function is a CRF if it is hard to find two messages that get
mapped to the same value threw this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm
that can find two messages m1 and m2 such that f (m1) = f (m2)

Constant functions ARE NOT CRFs
for all m1 and m2, f (m1) = f (m2)

The successor function in N IS a CRF
the predecessor of a positive integer is unique

Multiplication of large primes IS a CRF:
every positive integer has a unique prime factorization

4 / 21

Collision-resistant functions (CRFs)

A function is a CRF if it is hard to find two messages that get
mapped to the same value threw this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm
that can find two messages m1 and m2 such that f (m1) = f (m2)

Constant functions ARE NOT CRFs
for all m1 and m2, f (m1) = f (m2)

The successor function in N IS a CRF
the predecessor of a positive integer is unique

Multiplication of large primes IS a CRF:
every positive integer has a unique prime factorization

4 / 21

Collision-resistant functions (CRFs)

A function is a CRF if it is hard to find two messages that get
mapped to the same value threw this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm
that can find two messages m1 and m2 such that f (m1) = f (m2)

Constant functions ARE NOT CRFs
for all m1 and m2, f (m1) = f (m2)

The successor function in N IS a CRF
the predecessor of a positive integer is unique

Multiplication of large primes IS a CRF:
every positive integer has a unique prime factorization

4 / 21

Cryptographic hash functions

A cryptographic hash function takes messages of arbitrary length
end returns a fixed-size bit string such that any change to the data
will (with very high probability) change the corresponding hash
value.

Definition (Cryptographic hash function)

A cryptographic hash function H : M→ T is a function that
satisfies the following 4 properties:

I |M| >> |T |
I it is easy to compute the hash value for any given message

I it is hard to retrieve a message from it hashed value (OWF)

I it is hard to find two different messages with the same hash
value (CRF)

Examples: MD4, MD5, SHA-1, SHA-256, Whirlpool, . . .

5 / 21

Cryptographic hash functions: applications

I Commitments - Allow a participant to commit to a value v
by publishing the hash H(v) of this value, but revealing v only
later. Ex: electronic voting protocols, digital signatures, . . .

I File integrity - Hashes are sometimes posted along with files
on “read-only” spaces to allow verification of integrity of the
files. Ex: SHA-256 is used to authenticate Debian GNU/Linux
software packages

I Password verification - Instead of storing passwords in
cleartext, only the hash digest of each password is stored. To
authenticate a user, the password presented by the user is
hashed and compared with the stored hash.

I Key derivation - Derive new keys or passwords from a single,
secure key or password.

I Building block of other crypto primitives - Used to build
MACs, block ciphers, PRG, . . .

6 / 21

Cryptographic hash functions: applications

I Commitments - Allow a participant to commit to a value v
by publishing the hash H(v) of this value, but revealing v only
later. Ex: electronic voting protocols, digital signatures, . . .

I File integrity - Hashes are sometimes posted along with files
on “read-only” spaces to allow verification of integrity of the
files. Ex: SHA-256 is used to authenticate Debian GNU/Linux
software packages

I Password verification - Instead of storing passwords in
cleartext, only the hash digest of each password is stored. To
authenticate a user, the password presented by the user is
hashed and compared with the stored hash.

I Key derivation - Derive new keys or passwords from a single,
secure key or password.

I Building block of other crypto primitives - Used to build
MACs, block ciphers, PRG, . . .

6 / 21

Cryptographic hash functions: applications

I Commitments - Allow a participant to commit to a value v
by publishing the hash H(v) of this value, but revealing v only
later. Ex: electronic voting protocols, digital signatures, . . .

I File integrity - Hashes are sometimes posted along with files
on “read-only” spaces to allow verification of integrity of the
files. Ex: SHA-256 is used to authenticate Debian GNU/Linux
software packages

I Password verification - Instead of storing passwords in
cleartext, only the hash digest of each password is stored. To
authenticate a user, the password presented by the user is
hashed and compared with the stored hash.

I Key derivation - Derive new keys or passwords from a single,
secure key or password.

I Building block of other crypto primitives - Used to build
MACs, block ciphers, PRG, . . .

6 / 21

Cryptographic hash functions: applications

I Commitments - Allow a participant to commit to a value v
by publishing the hash H(v) of this value, but revealing v only
later. Ex: electronic voting protocols, digital signatures, . . .

I File integrity - Hashes are sometimes posted along with files
on “read-only” spaces to allow verification of integrity of the
files. Ex: SHA-256 is used to authenticate Debian GNU/Linux
software packages

I Password verification - Instead of storing passwords in
cleartext, only the hash digest of each password is stored. To
authenticate a user, the password presented by the user is
hashed and compared with the stored hash.

I Key derivation - Derive new keys or passwords from a single,
secure key or password.

I Building block of other crypto primitives - Used to build
MACs, block ciphers, PRG, . . .

6 / 21

Cryptographic hash functions: applications

I Commitments - Allow a participant to commit to a value v
by publishing the hash H(v) of this value, but revealing v only
later. Ex: electronic voting protocols, digital signatures, . . .

I File integrity - Hashes are sometimes posted along with files
on “read-only” spaces to allow verification of integrity of the
files. Ex: SHA-256 is used to authenticate Debian GNU/Linux
software packages

I Password verification - Instead of storing passwords in
cleartext, only the hash digest of each password is stored. To
authenticate a user, the password presented by the user is
hashed and compared with the stored hash.

I Key derivation - Derive new keys or passwords from a single,
secure key or password.

I Building block of other crypto primitives - Used to build
MACs, block ciphers, PRG, . . .

6 / 21

Collision resistance and the birthday attack

Theorem

Let H : M→ {0, 1}n be a cryptographic hash function
(|M| >> 2n)
Generic algorithm to find a collision in time O(2n/2) hashes:

1. Choose 2n/2 random messages in M: m1, . . . ,m2n/2

2. For i = 1, . . . , 2n/2 compute ti = H(mi)

3. If there exists a collision (∃i , j . ti 6= tj)
then return (ti , tj)
else go back to 1

Birthday paradox Let r1, . . . , rn ∈ {1, . . . ,N} be independent

variables. For n = 1.2×
√
N, Pr(∃i 6= j . ri = rj) ≥ 1

2
⇒ the expected number of iteration is 2
⇒ running time O(2n/2)

⇒ Cryptographic function used in new projects should have an
output size n ≥ 256!

7 / 21

The Merkle-Damgard construction

m0	
 m1	
 m2	
 m3	
 ||	
 PB	

IV
(fixed)

H1 H2 H3 H4 = H(m)

m

h h h h

I Compression function: h : T × X → T
I PB: 1000 . . . 0||mes-len (add extra block if needed)

Theorem

Let H be built using the MD construction to the compression
function h. If H admits a collision, so does h.

Example of MD constructions: MD5, SHA-1, SHA-2, . . .
8 / 21

Compression functions from block ciphers

Let E : K × {0, 1}n → {0, 1}n be a block cipher

E(k,)	
 +	

mi

Hi Hi+1 E(k,)	
 +	

mi

Hi Hi+1

Davies-Meyer Miyaguchi-Preneel

9 / 21

Compression functions from block ciphers

Let E : K × {0, 1}n → {0, 1}n be a block cipher

E(k,)	
 +	

mi

Hi Hi+1

E(k,)	
 +	

mi

Hi Hi+1

Davies-Meyer

Miyaguchi-Preneel

9 / 21

Compression functions from block ciphers

Let E : K × {0, 1}n → {0, 1}n be a block cipher

E(k,)	
 +	

mi

Hi Hi+1 E(k,)	
 +	

mi

Hi Hi+1

Davies-Meyer Miyaguchi-Preneel

9 / 21

Example of cryptographic hash function: SHA-256

I Structure: Merkle-Damgard

I Compression function: Davies-Meyer

I Bloc cipher: SHACAL-2

SHACAL-­‐2	
 256-­‐bit	
 block	

512-­‐bit	
 key	

256-­‐bit	
 block	

10 / 21

Message Authentication Codes (MACs)

Myrto Arapinis
School of Informatics

University of Edinburgh

October 11, 2016

11 / 21

Goal: message integrity

tag t message m

Alice Bob

Generate tag
t ← MDC(m)

Verify tag
V(m,t)=“yes”?

k k

A MAC is a pair of algorithms (S ,V) defined over (K,M, T):

S : K ×M→ T
V : K ×M× T → {>,⊥}
Consistency: V (k ,m,S(k ,m)) = T

and such that

It is hard to computer a valid pair (m, S(k ,m)) without
knowing k

12 / 21

Goal: message integrity

tag t message m

Alice Bob

Generate tag
t ← S(k,m)

Verify tag
V(k,m,t)=“yes”?

k k

A MAC is a pair of algorithms (S ,V) defined over (K,M, T):

I S : K ×M→ T
I V : K ×M× T → {>,⊥}
I Consistency: V (k,m,S(k ,m)) = T

and such that

I It is hard to computer a valid pair (m, S(k,m)) without
knowing k

13 / 21

File system protection

I At installation time

F1 F2 Fn

t1	
 =	
 S(k,	
 F1)	
 t2	
 =	
 S(k,	
 F2)	
 tn	
 =	
 S(k,	
 Fn)	

k derived from user password

I To check for virus file tampering/alteration:
I reboot to clean OS
I supply password
I any file modification will be detected

14 / 21

Block ciphers and message integrity

Let (E ,D) be a block cipher. We build a MAC (S ,V) using (E ,D)
as follows:

I S(k ,m) = E (k ,m)

I V (k,m, t) = if m = D(k , t)
then return >
else return ⊥

But: block ciphers can usually process only 128 or 256 bits

Our goal now: construct MACs for long messages

15 / 21

Block ciphers and message integrity

Let (E ,D) be a block cipher. We build a MAC (S ,V) using (E ,D)
as follows:

I S(k ,m) = E (k ,m)

I V (k,m, t) = if m = D(k , t)
then return >
else return ⊥

But: block ciphers can usually process only 128 or 256 bits

Our goal now: construct MACs for long messages

15 / 21

Block ciphers and message integrity

Let (E ,D) be a block cipher. We build a MAC (S ,V) using (E ,D)
as follows:

I S(k ,m) = E (k ,m)

I V (k,m, t) = if m = D(k , t)
then return >
else return ⊥

But: block ciphers can usually process only 128 or 256 bits

Our goal now: construct MACs for long messages

15 / 21

Block ciphers and message integrity

Let (E ,D) be a block cipher. We build a MAC (S ,V) using (E ,D)
as follows:

I S(k ,m) = E (k ,m)

I V (k,m, t) = if m = D(k , t)
then return >
else return ⊥

But: block ciphers can usually process only 128 or 256 bits

Our goal now: construct MACs for long messages

15 / 21

ECBC-MAC

m0	

E(K1,)	

m1	

+	

E(K1,)	

m2	

+	

E(K1,)	

m3	

+	

E(K1,)	

E(K2,)	
 t	

I E : K × {0, 1}n → {0, 1}n a block cipher
I ECBC -MAC : K2 × {0, 1}∗ → {0, 1}n

→ the last encryption is crucial to avoid forgeries!!

(details on the board)

Ex: 802.11i uses AES based ECBC-MAC
16 / 21

PMAC

m0	

E(K1,)	

m1	

+	

E(K1,)	

m2	

+	

E(K1,)	

m3	

+	
 +	

+	

E(K1,)	
 t	

P(K2, 0) P(K2, 1) P(K2, 2) P(K2,30)

I E : K × {0, 1}n → {0, 1}n a block cipher
I P : K × N→ {0, 1}n any easy to compute function
I PMAC : K2 × {0, 1}∗ → {0, 1}n 17 / 21

HMAC

MAC built from cryptographic hash functions

HMAC (k,m) = H(k ⊕ OP||H(k ⊕ IP||m))

IP,OP: publicly known padding constants

k	
 XOR	
 IP	
 m0	
 m1	
 m2	

IV
(fixed) h h h h

k	
 XOR	
 OP	

h h IV
(fixed)

t	

Ex: SSL, IPsec, SSH, . . .
18 / 21

Authenticated encryption

Myrto Arapinis
School of Informatics

University of Edinburgh

October 11, 2016

19 / 21

Plain encryption is malleable

Goal

Simultaneously provide data confidentiality, integrity and
authenticity
 decryption combined with integrity verification in one step

I The decryption algorithm never fails
I Changing one bit of the i th block of the ciphertext

I CBC decryption: will affect last blocks after the i th of the
plaintext

I ECB decryption: will only the i th block of the plaintext
I CTR decryption: will only affect one bit of the i th block of the

plaintext

Decryption should fail if a ciphertext was not computed using the
key

20 / 21

Encrypt-then-MAC

1. Always compute the MACs on the ciphertext, never on the
plaintext

2. Use two different keys, one for encryption (KE) and one for
the MAC (KM)

Encryption

1. C ← EAES(KE ,M)

2. T ← HMAC -SHA(KM ,C)

3. return C ||T

Decryption

1. if T = HMAC − SHA(K2,C)

2. then return DAES(K1,C)

3. else return ⊥

Do not:

I Encrypt-and-MAC: EAES(KE ,M)||HMAC -SHA(KM ,M)

I MAC-then-Encrypt: EAES(KE ,M||HMAC -SHA(KM ,M))

21 / 21

