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Symmetric encryption schemes

A symmetric cipher consists of two algorithms
> encryption algorithm E: K x M —C
» decryption algorithm D : K x C — M
st. Vk € K, and Vm € M, D(k,E(k,m)) = m

Kerckhoff's principle
» The encryption (E) and decryption (D) algorithms are public
» The security relies entirely on the secrecy of the key

N
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Adversarie's capabilities - threat model

The attacker may have access to :

>

>

some ciphertexts ci, ..., ¢,

some plaintext/ciphertext pairs (m1, c1), ..., (Mg, cn)

st. ¢; = E(k, m;))

an encryption oracle - he can maybe trick a user to encrypt
messages my, ..., m, of his choice

a decryption oracle - he can maybe trick a user to decrypt
ciphertexts c1, ..., ¢, of his choice

unlimited, or polynomial, or realistic (< 28°) computational
power

A cryptographic scheme is secure under some assumptions,
that is against a certain type of attacker

A cryptographic scheme may be vulnerable to certain types of
attacks but not others
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What is a good encryption scheme?

An encryption scheme is secure against a given adversary, if this
adversary cannot

>

>

>

recover the secret key k
recover the plaintext m underlying a ciphertext ¢

recover any bits of the plaintext m underlying a ciphertext ¢
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The One-Time Pad (OTP)

» M =C =K = {01}
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The One-Time Pad (OTP)

»M =C =K = {0,1}"

» Encryption: Vk € K.Vme M. E(k,m) =k & m

k

01101001
10001011

11100010

» Decryption: Yk € K. Vc e C. D(k,c)=k®c

k
c

011
111

o O

0
0

= O

1 1
0 0

m

10001011
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The One-Time Pad (OTP)

» M =C =K = {0,1}"
» Encryption: Vk € K.Vme M. E(k,m) =k & m

k =01101001
10001011

c =11100010

» Decryption: Yk € K. Vc e C. D(k,c)=k®c
k =011
c =111

o O

0
0

= O

1 1
0 0

m = 100012011

» Consistency: D(k, E(k,m)) =k®& (k& m)=m
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Perfect secrecy

Definition
A cipher (E, D) over (M,C, K) satisfies perfect secrecy if for all
messages my, my € M of same length (|my| = |mz]), and for all

ciphertexts c € C
|Pr(E(k,m) =c)— Pr(E(k,mp) =c)| <e

where k <~ K and ¢ is some “negligible quantity”.

6
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OTP satisfies perfect secrecy

The One-Time Pad satisfies perfect secrecy l
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OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages m € M and all
ciphertexts ¢ € C

Pr(E(k,m) = c)

where k < K.
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Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages m € M and all
ciphertexts ¢ € C

Pr(E(k,m)=c) = #kek om=c}

#{keK: k=m&c}
#K
1

= Zr

where k < K.
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OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages m € M and all
ciphertexts ¢ € C

Pr(E(k,m)=c) = #kek om=c}

_ #{keK: k=mdc}
#K

1
= ¢
where k < K.
Thus, for all messages my, my € M, and for all ciphertexts c € C

|Pr(E(k,m1) =c)— Pr(E(k,my) =c)| <

~
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OTP satisfies perfect secrecy

Theorem (Shannon 1949)

The One-Time Pad satisfies perfect secrecy

Proof: We first note that for all messages m € M and all
ciphertexts ¢ € C
_ #{keK: km=c}
) = e
#{keK: k=m&c}
#K

Pr(E(k,m) =

1
= ¢
where k < K.
Thus, for all messages my, my € M, and for all ciphertexts c € C

|Pr(E(k,m) = ¢) = Pr(E(k, m2) = c)| < '#’C #E|
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Limitations of OTP

> Key-length!
» The key should be as long as the plaintext.

» Getting true randomness!
» The key should not be guessable from an attacker.

> Perfect secrecy does not capture all possible attacks
» OTP is subject to two-time pad attacks
given my @ k and my @ k, we can compute
mleBmz:(ml@k)eB(mz@k)
English has enough redundancy s.t. m; & my — my, mp

» OTP is malleable
given the ciphertext ¢ = E(k, m) with m = to bob : mg, it is
possible to compute the ciphertext ¢’ = E(k, m’) with
m’ = to eve : my
c':=c®"to bob:00...00" ®"to eve:00...00"
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Stream ciphers

v

Goal: make the OTP practical

> ldea: use a pseudorandom key rather than a really random key
» The key will not really be random, but will look random
» The key will be generated from a key seed using a
Pseudo-Random Generator (PRG)
G: {0,1}* — {0,1}" with s << n
>

Encryption using a PRG G: E(k,m) = G(k)® m

v
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Goal: make the OTP practical

v

Idea: use a pseudorandom key rather than a really random key
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RC4

» Stream cipher invented by Ron Rivest in 1987

v

Consists of 2 phases:

seed 2048 bits

k
:: 1 byte per
U ( g \%\ ’ round

\ ) L J

T T
initialisation keystream generation

v

Main data structure: array S of 256 bytes.

Used in HTTPS and WEP
Weaknesses of RC4:

> first bytes are biased
— drop the first to 256 generated bytes
> subject to related keys attacks
— choose randomly generated keys as seeds

v

v
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RC4: initialisation

for /i :=0 to 255 do
Sli]:==i

end

j:=0

for i :=0 to 255 do
J =+ S[i] + K[i(mod |K])])(mod 256)
swap(S[i], S[J])

end

=0
j:=0
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RC4: key stream generation

while generatingOutput
i:=1i4 1(mod 256)
J :=Jj+ S[i](mod 256)
swap(Sli], S
output(S[S[i] + S[j](mod 256)])

end
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WEP uses RC4

| |

-
k k
> I
[ M— .
(r— !

Initialisation Vector (IV): 24-bits long string
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Weaknesses of TLS

MUST READ THESE TEN CITIES ARE HOME TO THE BIGGEST BOTNETS.

RC4 NOMORE crypto exploit used to
decrypt user cookies in mere hours

Websites using RC4 encryption need to change their protocols as exploits using
design flaws are now far easier to perform.

a By Chartie Osbome for Zero Day | July 20, 2015 -- 10:21 GMT (1121 BST) | Topic: Security

Recommended Content:
‘White Papers: Network Based Security Infographic

We operate and continue to build an expansive giobal fiber network. From that vantage point, our state-0f-te-art Security Leam more
Operations Centers (SOC) monitor the complete threat landscape. Network-based securty from Level 3 wraps your data,
and with...

RECOMMENDED FOR YOU
Safeguarding the Internet - Level 3

Botnet Research Report
wr

READ MORE

RELATED STORIES

ations

Security
H Accenture acquires Defense Point
ACCENUE Security to boost US federal
defenses

Securiy
Facebookrols outopt-n encryption
for secret’ Messenger ch

Security
Fods subpoens, gag encrypted chat
firm Open Whisper System:

curity
Insulin pump vulnerabilities could
lead to overdose.
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Linear Feedback Shift Registers (LFSRs)

» K={0,1}°

» Main data structure: register R of s bits

> Initialisation: R := k

» Keystream generation: 1-bit output per round
taps: n,h2,...1p
feedback bit: R[i1] ® R[i2] & --- & R[if]
output bit: R[s]

I _____ | I | | OUtpUt bit

. L .
i JIZ iy
feedback bit
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Linear Feedback Shift Registers (LFSRs)

» £ ={0,1}°

» Main data structure: register R of s bits

> Initialisation: R := k

» Keystream generation: 1-bit output per round
taps: n,h2,...1p
feedback bit: R[i1] ® R[i2] & --- & R[if]
output bit: R[s]

[T [ [ [ ] [ J-oueutet

iy liz iy
feedback bit

» Broken LFSR-based stream ciphers:
» DVD encryption: CSS (2 LFSRs)
» GSM encryption: A5 (3 LFSRs)
» Bluetooth encryption: EO (4 LFSRs)
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Content Scrambling System (CSS) uses LFSRs
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Content Scrambling System (CSS) uses LFSRs

» K ={0,1}%
» Data structures: 17-bits LFSR (Ri7) and 25-bits LFSR (Rys)

» Initialisation: Ry7 := 1||K[0 — 15]
Ros := 1||K[16 — 39]

» Keystream generation: 1-byte output per round

1 byte

| 17-bit LFSR |

1 byte

| 25-bit LFSR

carry-out from
previous round

carry-out
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Weaknesses in CSS

Can be broken in time 217. The idea of the attack is as follows:
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Weaknesses in CSS

Can be broken in time 217. The idea of the attack is as follows:

» Because of structure of MPEG-2, first 20 bytes of plaintext
are known

» Hence also first 20 bytes of keystream are known

» Given output of 17 bit LFSR, can deduce output of 25 bit
LFSR by subtraction

» Hence try all 217 possibilities for 17 bit LFSR and if generated
25 bit LFSR produces observed keystream, cipher is cracked
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Android BitCoin attack

dlS TECHNICA =

RANDOM THEFT—

All Android-created Bitcoin wallets
vulnerable to theft
‘Android Java

LEE HUTCHINSON - 8/12/2013, 3:15 PM

function flaw security of Android wallets.

. Bitcoin.org released a security advisory over & the Bitcoin y that any
o onany o

d open to theft. The insecurity appears

e

Qe
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Modern stream ciphers

Project eStream: project to “identify new stream ciphers suitable
for widespread adoption”, organised by the EU ECRYPT network
— HC-128, Rabbit, Salsa20/12, SOSEMANUK,

Grain vl1, MICKEY 2.0, Trivium
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Modern stream ciphers

Project eStream: project to “identify new stream ciphers suitable
for widespread adoption”, organised by the EU ECRYPT network
— HC-128, Rabbit, Salsa20/12, SOSEMANUK,

Grain vl1, MICKEY 2.0, Trivium

Conjecture

These eStream stream ciphers are “secure”
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Concluding remarks

» Perfect secrecy does not capture all possible attacks.
— need for different security definition

» Theorem (Shannon 1949) Let (E, D) be a cipher over
(M,C,K). If (E, D) satisfies perfect secrecy, then the keys
should be at least as long as the plaintexts (M| < |K]).
= Stream ciphers do not satisfy perfect secrecy because the
keys in /C are smaller than the messages in M
— need for different security definition

» The design of crypto primitives is subtle and error prone.
— use standardised publicly know primitives

» Crypto primitives are secure under a precisely defined threat
model.
— respect the security assumptions of the crypto primitives

» Many attacks dues to poor implementations of cryptography
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