
Protocols for anonymity

Myrto Arapinis
School of Informatics

University of Edinburgh

October 31, 2016

1 / 34



Context

I The Internet is a public network:
I network routers see all traffic that passes through them

I Routing information is public:
I IP packet headers contain source and destination of packets

I Encryption does not hide identities:
I encryption hides payload, but not routing information

2 / 34



Routing information can reveal who you are!

INTERNET 

79.170.40.232 

64.131.67.188 192.185.48.150 

108.168.213.84 

69.25.28.142 216.240.189.1 

192.254.187.105 

X1.X2.X3.X4 

66.154.48.145 

3 / 34



Routing information can reveal who you are!

4 / 34



Routing information can reveal who you are!

5 / 34



Routing information can reveal who you are!

“With your permission, you give us more information
about you, about your friends, and we can improve the
quality of your searches. We don’t need you to type at
all. We know where you are. We know where you’ve
been. We can more or less know what you’re thinking
about.”

Eric Schmidt, CEO Google, 2010
6 / 34



Your IP address is your ID

Your IP address leaves behind digital tracks that can be used to
identify you and invade your privacy

7 / 34



The McNealy argument

“You have zero privacy anyway. Get over it”
Scott McNealy, CEO Sun Microsystems, 1999

8 / 34



The Schmidt argument

“If you have something that you don’t want anyone to
know maybe you shouldn’t be doing it in the first place”

Eric Schmidt, CEO Google, 2009

9 / 34



Anonymity

Definition (ISO/IEC standard 15408)

A user may use a service or resource without disclosing the users
identity.

−→ this can be achieved by hiding one’s activities among others’
similar activities

• Dinning cryptographers

• Crowds

• Chaum’s mix

• Onion routing

10 / 34



Anonymity

Definition (ISO/IEC standard 15408)

A user may use a service or resource without disclosing the users
identity.

−→ this can be achieved by hiding one’s activities among others’
similar activities

• Dinning cryptographers

• Crowds

• Chaum’s mix

• Onion routing

10 / 34



Three-party dinning cryptographers (3DC) protocol

Three cryptographers are having dinner. Either NSA paid for the
dinner, or one of the cryptographers. They want to know if it is
the NSA that paid, but without revealing the identity of the
cryptographer that paid in the case the NSA did not pay.

3DC protocol:

1. Each cryptographer flips a coin and shows it to his left
neighbor:

I each cryptographer will see his own coin and his right
neighbor’s

2. Each cryptographer announces whether the two coins he saw
are the same. If he is the payer, he lies

3. odd number of “same” ⇒ the NSA paid
even number of “same” ⇒ one of the cryptographers paid

I only the payer knows he is the one who paid

11 / 34



Superposed sending

I 3DC protocol generalises to any group size n (nDC)
I Sender wants to anonymously broadcast a message m:

1. for each bit of the m, every user generates a random bit and
sends it to his left neighbor

I every user learns two bits: his own, and his right neighbor’s

2. each user (except the sender) announces (own bit XOR
neighbor’s bit)

3. the sender announces (own bit XOR neighbor’s bit XOR
message bit)

4. XOR of all announcements = message bit
I every randomly generated bit occurs in this sum twice (and is

canceled by XOR)
I message bit occurs only once

12 / 34



Limitations of the DC protocol

The DC protocol is impractical:

I Requires pair-wise shared secret keys (secure channels)
between the participants (to share random bits)

I Requires large amounts of randomness

13 / 34



Crowds

[M. K. Reiter and A. D. Rubin, “Crowds: anonymity for Web
transactions”. ACM Transactions on Information and System Security.]

Idea: randomly route the request through a crowd of users

I a crowd is a group of m users; c out of
m users may be corrupted

I an initiator that wants to request a
webpage creates a path between him
and the server:

1. the initiator selects a forwarder from
the crowd and sends him his request

2. a forwarder delivers the request
directly to the server with probability
1− pf ; he forwards the request to a
randomly selected new forwarder from
the crowd with probability pf ; the
new forwarder repeats the procedure

3. the response from the server follows
same route in opposite direction

Anonymity protocols

Figure 3.2: The Crowds protocol

forwarding it for somebody else.
More specifically a crowd is a group of m users who participate in the

protocol. Some of the users may be corrupted which means they can collaborate
in order to reveal the identity of the originator. Let c be the number of such
users and pf 2 (0, 1] a parameter of the protocol. When a user, called the
initiator or originator, wants to request a web page he must create a path
between him and the server. This is achieved by the following process, also
displayed in Figure 3.2.

• The initiator selects randomly a member of the crowd (possibly himself)
and forwards the request to him. We will refer to this latter user as the
forwarder.

• A forwarder, upon receiving a request, flips a biased coin. With probabil-
ity 1� pf he delivers the request directly to the server. With probability
pf he selects randomly, with uniform probability, a new forwarder (possi-
bly himself) and forwards the request to him. The new forwarder repeats
the same procedure.

The response from the server follows the same route in the opposite direction to
return to the initiator. Moreover, all communication in the path is encrypted
using a path key, mainly to defend against local eavesdroppers (see [RR98] for
more details).

Each user is considered to have access only to the tra�c routed through
him, so he cannot intercept messages addressed to other users. With respect to
the web server the protocol o↵ers strong anonymity. This is ensured by the fact
that the initiator never sends the message directly to the server, there is at least
one step of forwarding. After this step the message will be in possession of any
user with equal probability. As a consequence, the last user in the path, that
is the one observed by the web server, can be anyone with equal probability,
thus the web server can gain no information about the identity of the initiator.

The more interesting case, however, is the anonymity wrt a corrupted user
that participates in the protocol. In this case, the initiator might try to forward
the message to the attacker, so the latter can gain more information than the
end server. We say that a user is detected if he sends a message to a corrupted
user. Then it is clear that the initiator, since he always appears in a path, is
more likely to be detected than the rest of the users. Thus detecting a user

21

pa
st

el
-0

00
03

95
0,

 v
er

si
on

 1
 - 

27
 J

ul
 2

01
0

Crowd IS NOT resistant
against an attacker that sees

the whole network traffic!

14 / 34



Crowds

[M. K. Reiter and A. D. Rubin, “Crowds: anonymity for Web
transactions”. ACM Transactions on Information and System Security.]

Idea: randomly route the request through a crowd of users

I a crowd is a group of m users; c out of
m users may be corrupted

I an initiator that wants to request a
webpage creates a path between him
and the server:

1. the initiator selects a forwarder from
the crowd and sends him his request

2. a forwarder delivers the request
directly to the server with probability
1− pf ; he forwards the request to a
randomly selected new forwarder from
the crowd with probability pf ; the
new forwarder repeats the procedure

3. the response from the server follows
same route in opposite direction

Anonymity protocols

Figure 3.2: The Crowds protocol

forwarding it for somebody else.
More specifically a crowd is a group of m users who participate in the

protocol. Some of the users may be corrupted which means they can collaborate
in order to reveal the identity of the originator. Let c be the number of such
users and pf 2 (0, 1] a parameter of the protocol. When a user, called the
initiator or originator, wants to request a web page he must create a path
between him and the server. This is achieved by the following process, also
displayed in Figure 3.2.

• The initiator selects randomly a member of the crowd (possibly himself)
and forwards the request to him. We will refer to this latter user as the
forwarder.

• A forwarder, upon receiving a request, flips a biased coin. With probabil-
ity 1� pf he delivers the request directly to the server. With probability
pf he selects randomly, with uniform probability, a new forwarder (possi-
bly himself) and forwards the request to him. The new forwarder repeats
the same procedure.

The response from the server follows the same route in the opposite direction to
return to the initiator. Moreover, all communication in the path is encrypted
using a path key, mainly to defend against local eavesdroppers (see [RR98] for
more details).

Each user is considered to have access only to the tra�c routed through
him, so he cannot intercept messages addressed to other users. With respect to
the web server the protocol o↵ers strong anonymity. This is ensured by the fact
that the initiator never sends the message directly to the server, there is at least
one step of forwarding. After this step the message will be in possession of any
user with equal probability. As a consequence, the last user in the path, that
is the one observed by the web server, can be anyone with equal probability,
thus the web server can gain no information about the identity of the initiator.

The more interesting case, however, is the anonymity wrt a corrupted user
that participates in the protocol. In this case, the initiator might try to forward
the message to the attacker, so the latter can gain more information than the
end server. We say that a user is detected if he sends a message to a corrupted
user. Then it is clear that the initiator, since he always appears in a path, is
more likely to be detected than the rest of the users. Thus detecting a user

21

pa
st

el
-0

00
03

95
0,

 v
er

si
on

 1
 - 

27
 J

ul
 2

01
0

Crowd IS NOT resistant
against an attacker that sees

the whole network traffic!

14 / 34



Crowds

[M. K. Reiter and A. D. Rubin, “Crowds: anonymity for Web
transactions”. ACM Transactions on Information and System Security.]

Idea: randomly route the request through a crowd of users

I a crowd is a group of m users; c out of
m users may be corrupted

I an initiator that wants to request a
webpage creates a path between him
and the server:

1. the initiator selects a forwarder from
the crowd and sends him his request

2. a forwarder delivers the request
directly to the server with probability
1− pf ; he forwards the request to a
randomly selected new forwarder from
the crowd with probability pf ; the
new forwarder repeats the procedure

3. the response from the server follows
same route in opposite direction

Anonymity protocols

Figure 3.2: The Crowds protocol

forwarding it for somebody else.
More specifically a crowd is a group of m users who participate in the

protocol. Some of the users may be corrupted which means they can collaborate
in order to reveal the identity of the originator. Let c be the number of such
users and pf 2 (0, 1] a parameter of the protocol. When a user, called the
initiator or originator, wants to request a web page he must create a path
between him and the server. This is achieved by the following process, also
displayed in Figure 3.2.

• The initiator selects randomly a member of the crowd (possibly himself)
and forwards the request to him. We will refer to this latter user as the
forwarder.

• A forwarder, upon receiving a request, flips a biased coin. With probabil-
ity 1� pf he delivers the request directly to the server. With probability
pf he selects randomly, with uniform probability, a new forwarder (possi-
bly himself) and forwards the request to him. The new forwarder repeats
the same procedure.

The response from the server follows the same route in the opposite direction to
return to the initiator. Moreover, all communication in the path is encrypted
using a path key, mainly to defend against local eavesdroppers (see [RR98] for
more details).

Each user is considered to have access only to the tra�c routed through
him, so he cannot intercept messages addressed to other users. With respect to
the web server the protocol o↵ers strong anonymity. This is ensured by the fact
that the initiator never sends the message directly to the server, there is at least
one step of forwarding. After this step the message will be in possession of any
user with equal probability. As a consequence, the last user in the path, that
is the one observed by the web server, can be anyone with equal probability,
thus the web server can gain no information about the identity of the initiator.

The more interesting case, however, is the anonymity wrt a corrupted user
that participates in the protocol. In this case, the initiator might try to forward
the message to the attacker, so the latter can gain more information than the
end server. We say that a user is detected if he sends a message to a corrupted
user. Then it is clear that the initiator, since he always appears in a path, is
more likely to be detected than the rest of the users. Thus detecting a user

21

pa
st

el
-0

00
03

95
0,

 v
er

si
on

 1
 - 

27
 J

ul
 2

01
0

Crowd IS NOT resistant
against an attacker that sees

the whole network traffic!

14 / 34



Crowds

[M. K. Reiter and A. D. Rubin, “Crowds: anonymity for Web
transactions”. ACM Transactions on Information and System Security.]

Idea: randomly route the request through a crowd of users

I a crowd is a group of m users; c out of
m users may be corrupted

I an initiator that wants to request a
webpage creates a path between him
and the server:

1. the initiator selects a forwarder from
the crowd and sends him his request

2. a forwarder delivers the request
directly to the server with probability
1− pf ; he forwards the request to a
randomly selected new forwarder from
the crowd with probability pf ; the
new forwarder repeats the procedure

3. the response from the server follows
same route in opposite direction

Anonymity protocols

Figure 3.2: The Crowds protocol

forwarding it for somebody else.
More specifically a crowd is a group of m users who participate in the

protocol. Some of the users may be corrupted which means they can collaborate
in order to reveal the identity of the originator. Let c be the number of such
users and pf 2 (0, 1] a parameter of the protocol. When a user, called the
initiator or originator, wants to request a web page he must create a path
between him and the server. This is achieved by the following process, also
displayed in Figure 3.2.

• The initiator selects randomly a member of the crowd (possibly himself)
and forwards the request to him. We will refer to this latter user as the
forwarder.

• A forwarder, upon receiving a request, flips a biased coin. With probabil-
ity 1� pf he delivers the request directly to the server. With probability
pf he selects randomly, with uniform probability, a new forwarder (possi-
bly himself) and forwards the request to him. The new forwarder repeats
the same procedure.

The response from the server follows the same route in the opposite direction to
return to the initiator. Moreover, all communication in the path is encrypted
using a path key, mainly to defend against local eavesdroppers (see [RR98] for
more details).

Each user is considered to have access only to the tra�c routed through
him, so he cannot intercept messages addressed to other users. With respect to
the web server the protocol o↵ers strong anonymity. This is ensured by the fact
that the initiator never sends the message directly to the server, there is at least
one step of forwarding. After this step the message will be in possession of any
user with equal probability. As a consequence, the last user in the path, that
is the one observed by the web server, can be anyone with equal probability,
thus the web server can gain no information about the identity of the initiator.

The more interesting case, however, is the anonymity wrt a corrupted user
that participates in the protocol. In this case, the initiator might try to forward
the message to the attacker, so the latter can gain more information than the
end server. We say that a user is detected if he sends a message to a corrupted
user. Then it is clear that the initiator, since he always appears in a path, is
more likely to be detected than the rest of the users. Thus detecting a user

21

pa
st

el
-0

00
03

95
0,

 v
er

si
on

 1
 - 

27
 J

ul
 2

01
0

Crowd IS NOT resistant
against an attacker that sees

the whole network traffic!

14 / 34



Crowds

[M. K. Reiter and A. D. Rubin, “Crowds: anonymity for Web
transactions”. ACM Transactions on Information and System Security.]

Idea: randomly route the request through a crowd of users

I a crowd is a group of m users; c out of
m users may be corrupted

I an initiator that wants to request a
webpage creates a path between him
and the server:

1. the initiator selects a forwarder from
the crowd and sends him his request

2. a forwarder delivers the request
directly to the server with probability
1− pf ; he forwards the request to a
randomly selected new forwarder from
the crowd with probability pf ; the
new forwarder repeats the procedure

3. the response from the server follows
same route in opposite direction

Anonymity protocols

Figure 3.2: The Crowds protocol

forwarding it for somebody else.
More specifically a crowd is a group of m users who participate in the

protocol. Some of the users may be corrupted which means they can collaborate
in order to reveal the identity of the originator. Let c be the number of such
users and pf 2 (0, 1] a parameter of the protocol. When a user, called the
initiator or originator, wants to request a web page he must create a path
between him and the server. This is achieved by the following process, also
displayed in Figure 3.2.

• The initiator selects randomly a member of the crowd (possibly himself)
and forwards the request to him. We will refer to this latter user as the
forwarder.

• A forwarder, upon receiving a request, flips a biased coin. With probabil-
ity 1� pf he delivers the request directly to the server. With probability
pf he selects randomly, with uniform probability, a new forwarder (possi-
bly himself) and forwards the request to him. The new forwarder repeats
the same procedure.

The response from the server follows the same route in the opposite direction to
return to the initiator. Moreover, all communication in the path is encrypted
using a path key, mainly to defend against local eavesdroppers (see [RR98] for
more details).

Each user is considered to have access only to the tra�c routed through
him, so he cannot intercept messages addressed to other users. With respect to
the web server the protocol o↵ers strong anonymity. This is ensured by the fact
that the initiator never sends the message directly to the server, there is at least
one step of forwarding. After this step the message will be in possession of any
user with equal probability. As a consequence, the last user in the path, that
is the one observed by the web server, can be anyone with equal probability,
thus the web server can gain no information about the identity of the initiator.

The more interesting case, however, is the anonymity wrt a corrupted user
that participates in the protocol. In this case, the initiator might try to forward
the message to the attacker, so the latter can gain more information than the
end server. We say that a user is detected if he sends a message to a corrupted
user. Then it is clear that the initiator, since he always appears in a path, is
more likely to be detected than the rest of the users. Thus detecting a user

21

pa
st

el
-0

00
03

95
0,

 v
er

si
on

 1
 - 

27
 J

ul
 2

01
0

Crowd IS NOT resistant
against an attacker that sees

the whole network traffic!

14 / 34



Crowds

[M. K. Reiter and A. D. Rubin, “Crowds: anonymity for Web
transactions”. ACM Transactions on Information and System Security.]

Idea: randomly route the request through a crowd of users

I a crowd is a group of m users; c out of
m users may be corrupted

I an initiator that wants to request a
webpage creates a path between him
and the server:

1. the initiator selects a forwarder from
the crowd and sends him his request

2. a forwarder delivers the request
directly to the server with probability
1− pf ; he forwards the request to a
randomly selected new forwarder from
the crowd with probability pf ; the
new forwarder repeats the procedure

3. the response from the server follows
same route in opposite direction

Anonymity protocols

Figure 3.2: The Crowds protocol

forwarding it for somebody else.
More specifically a crowd is a group of m users who participate in the

protocol. Some of the users may be corrupted which means they can collaborate
in order to reveal the identity of the originator. Let c be the number of such
users and pf 2 (0, 1] a parameter of the protocol. When a user, called the
initiator or originator, wants to request a web page he must create a path
between him and the server. This is achieved by the following process, also
displayed in Figure 3.2.

• The initiator selects randomly a member of the crowd (possibly himself)
and forwards the request to him. We will refer to this latter user as the
forwarder.

• A forwarder, upon receiving a request, flips a biased coin. With probabil-
ity 1� pf he delivers the request directly to the server. With probability
pf he selects randomly, with uniform probability, a new forwarder (possi-
bly himself) and forwards the request to him. The new forwarder repeats
the same procedure.

The response from the server follows the same route in the opposite direction to
return to the initiator. Moreover, all communication in the path is encrypted
using a path key, mainly to defend against local eavesdroppers (see [RR98] for
more details).

Each user is considered to have access only to the tra�c routed through
him, so he cannot intercept messages addressed to other users. With respect to
the web server the protocol o↵ers strong anonymity. This is ensured by the fact
that the initiator never sends the message directly to the server, there is at least
one step of forwarding. After this step the message will be in possession of any
user with equal probability. As a consequence, the last user in the path, that
is the one observed by the web server, can be anyone with equal probability,
thus the web server can gain no information about the identity of the initiator.

The more interesting case, however, is the anonymity wrt a corrupted user
that participates in the protocol. In this case, the initiator might try to forward
the message to the attacker, so the latter can gain more information than the
end server. We say that a user is detected if he sends a message to a corrupted
user. Then it is clear that the initiator, since he always appears in a path, is
more likely to be detected than the rest of the users. Thus detecting a user

21

pa
st

el
-0

00
03

95
0,

 v
er

si
on

 1
 - 

27
 J

ul
 2

01
0

Crowd IS NOT resistant
against an attacker that sees

the whole network traffic!

14 / 34



Crowds

[M. K. Reiter and A. D. Rubin, “Crowds: anonymity for Web
transactions”. ACM Transactions on Information and System Security.]

Idea: randomly route the request through a crowd of users

I a crowd is a group of m users; c out of
m users may be corrupted

I an initiator that wants to request a
webpage creates a path between him
and the server:

1. the initiator selects a forwarder from
the crowd and sends him his request

2. a forwarder delivers the request
directly to the server with probability
1− pf ; he forwards the request to a
randomly selected new forwarder from
the crowd with probability pf ; the
new forwarder repeats the procedure

3. the response from the server follows
same route in opposite direction

Anonymity protocols

Figure 3.2: The Crowds protocol

forwarding it for somebody else.
More specifically a crowd is a group of m users who participate in the

protocol. Some of the users may be corrupted which means they can collaborate
in order to reveal the identity of the originator. Let c be the number of such
users and pf 2 (0, 1] a parameter of the protocol. When a user, called the
initiator or originator, wants to request a web page he must create a path
between him and the server. This is achieved by the following process, also
displayed in Figure 3.2.

• The initiator selects randomly a member of the crowd (possibly himself)
and forwards the request to him. We will refer to this latter user as the
forwarder.

• A forwarder, upon receiving a request, flips a biased coin. With probabil-
ity 1� pf he delivers the request directly to the server. With probability
pf he selects randomly, with uniform probability, a new forwarder (possi-
bly himself) and forwards the request to him. The new forwarder repeats
the same procedure.

The response from the server follows the same route in the opposite direction to
return to the initiator. Moreover, all communication in the path is encrypted
using a path key, mainly to defend against local eavesdroppers (see [RR98] for
more details).

Each user is considered to have access only to the tra�c routed through
him, so he cannot intercept messages addressed to other users. With respect to
the web server the protocol o↵ers strong anonymity. This is ensured by the fact
that the initiator never sends the message directly to the server, there is at least
one step of forwarding. After this step the message will be in possession of any
user with equal probability. As a consequence, the last user in the path, that
is the one observed by the web server, can be anyone with equal probability,
thus the web server can gain no information about the identity of the initiator.

The more interesting case, however, is the anonymity wrt a corrupted user
that participates in the protocol. In this case, the initiator might try to forward
the message to the attacker, so the latter can gain more information than the
end server. We say that a user is detected if he sends a message to a corrupted
user. Then it is clear that the initiator, since he always appears in a path, is
more likely to be detected than the rest of the users. Thus detecting a user

21

pa
st

el
-0

00
03

95
0,

 v
er

si
on

 1
 - 

27
 J

ul
 2

01
0

Crowd IS NOT resistant
against an attacker that sees

the whole network traffic!

14 / 34



Chaum’s mix

[D. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms”, Communications of the ACM, February 1981.]

{{M1}r1
pkS1

, S1}r ′1
pkMix

{{M2}r2
pkS2

, S2}r ′2
pkMix

{{M3}r3
pkS1

, S1}r ′3
pkMix

{{M4}r4
pkS2

, S2}r ′4
pkMix

1 / 3{{M1}r1
pkS1

, S1}r ′1
pkMix

{{M2}r2
pkS2

, S2}r ′2
pkMix

{{M3}r3
pkS1

, S1}r ′3
pkMix

{{M4}r4
pkS2

, S2}r ′4
pkMix

1 / 3

{{M1}r1
pkS1

, S1}r ′1
pkMix

{{M2}r2
pkS2

, S2}r ′2
pkMix

{{M3}r3
pkS1

, S1}r ′3
pkMix

{{M4}r4
pkS2

, S2}r ′4
pkMix

1 / 3

{{M1}r1
pkS1

, S1}r ′1
pkMix

{{M2}r2
pkS2

, S2}r ′2
pkMix

{{M3}r3
pkS1

, S1}r ′3
pkMix

{{M4}r4
pkS2

, S2}r ′4
pkMix

1 / 3

{M1}r1
pkS1

, S1

{M2}r2
pkS2

, S2

{M3}r3
pkS1

, S1

{M4}r4
pkS2

, S2

2 / 9

{M1}r1
pkS1

, S1

{M2}r2
pkS2

, S2

{M3}r3
pkS1

, S1

{M4}r4
pkS2

, S2

2 / 9

{M1}r1
pkS1

, S1

{M2}r2
pkS2

, S2

{M3}r3
pkS1

, S1

{M4}r4
pkS2

, S2

2 / 9

{M1}r1
pkS1

, S1

{M2}r2
pkS2

, S2

{M3}r3
pkS1

, S1

{M4}r4
pkS2

, S2

2 / 9

Mix 

user 1 

user 2 

user 3 

user 4 

server 1 

server 2 

I message padding and buffering to avoid time correlation attacks

I dummy messages are generated by the mixes themselves to prevent
an attacker sending n − 1 messages to a mix with capacity n,
allowing him to then link the sender of the nth message with its
recipient

15 / 34



Anonymous return addresses

{{M, {K1, U}r1
pkMix

, K2}r2
pkS

, S}r3
pkMix

{M, {K1, U}r1
pkMix

, K2}r2
pkS

, S

{K1, U}r4
pkMix

, {M ′}r5
K2

{{M ′}r5
K2

}r6
K1

, U

3 / 3

{{M, {K1, U}r1
pkMix

, K2}r2
pkS

, S}r3
pkMix

{M, {K1, U}r1
pkMix

, K2}r2
pkS

, S

{K1, U}r4
pkMix

, {M ′}r5
K2

{{M ′}r5
K2

}r6
K1

, U

3 / 3

{{M, {K1, U}r1
pkMix

, K2}r2
pkS

, S}r3
pkMix

{M, {K1, U}r1
pkMix

, K2}r2
pkS

, S

{K1, U}r4
pkMix

, {M ′}r5
K2

{{M ′}r5
K2

}r6
K1

, U

3 / 3

{{M, {K1, U}r1
pkMix

, K2}r2
pkS

, S}r3
pkMix

{M, {K1, U}r1
pkMix

, K2}r2
pkS

, S

{K1, U}r4
pkMix

, {M ′}r5
K2

{{M ′}r5
K2

}r6
K1

, U

3 / 3

Mix 

user 
server 

Response Mix 

16 / 34



Mix cascade

Mix1 Mixi Mixn 

{ . . . { . . . {{M}r
pkS

, S}rn
pkMixn

. . . }ri
pkMixi

. . . }r1
pkMix1

{ . . . {{M}r
pkS

, S}rn
pkMixn

. . . }ri
pkMixi

{{M}r
pkS

, S}rn
pkMixn

{M}r
pkS

, S

1 / 14

{ . . . { . . . {{M}r
pkS

, S}rn
pkMixn

. . . }ri
pkMixi

. . . }r1
pkMix1

{ . . . {{M}r
pkS

, S}rn
pkMixn

. . . }ri
pkMixi

{{M}r
pkS

, S}rn
pkMixn

{M}r
pkS

, S

1 / 14

{ . . . { . . . {{M}r
pkS

, S}rn
pkMixn

. . . }ri
pkMixi

. . . }r1
pkMix1

{ . . . {{M}r
pkS

, S}rn
pkMixn

. . . }ri
pkMixi

{{M}r
pkS

, S}rn
pkMixn

{M}r
pkS

, S

1 / 14

{ . . . { . . . {{M}r
pkS

, S}rn
pkMixn

. . . }ri
pkMixi

. . . }r1
pkMix1

{ . . . {{M}r
pkS

, S}rn
pkMixn

. . . }ri
pkMixi

{{M}r
pkS

, S}rn
pkMixn

{M}r
pkS

, S

1 / 14

I messages are sent through a sequence of mixes

I some of the mixes may be corrupted
I a single honnest mix guarantees anonymity against an

attacker controlling the whole network provided it applies:
I message padding
I buffering
I dummy messages

17 / 34



Limitations of Chaum’s mixnets

I Asymmetric encryption is not efficitent

I Dummy messages are innefficient

I Buffering is not efficient

18 / 34



Onion routing

[R. Dingledine, N. Mathewson, and P. F. Syverson: “Tor: The
Second-Generation Onion Router”, USENIX Security Symposium 2004]

Idea: combine advantages of mixes and proxies

I use public-key crypto only to establish circuit

I use symmetric-key crypto to exchange data

I distribute trust like mixes

But does not defend against attackers that controle the hole network

19 / 34



TOR circuit setup

R1 

R2 

R3 

R4 

R6 

R5 

R7 

R8 

20 / 34



TOR circuit setup

R1 

R2 

R3 

R4 

R6 

R5 

R7 

R8 

K1 

K1 

I client establishes session key K1 and circuit with Onion
Router R1

21 / 34



TOR circuit setup

R1 

R2 

R3 

R4 

R6 

R5 

R7 

R8 

K1 

K1 

K2 

K2 

I client tunnels through that circuit to extend to Onion Router
R6

22 / 34



TOR circuit setup

R1 

R2 

R3 

R4 

R6 

R5 

R7 

R8 

K1 

K1 

K2 

K2 

K3 

K3 

I client tunnels through that extended circuit to extend to
Onion Router R4

23 / 34



TOR circuit setup

R1 

R2 

R3 

R4 

R6 

R5 

R7 

R8 

K1 

K1 

K2 

K2 

K3 

K3 

I client applications connect and communicate of established
TOR circuit

24 / 34



TOR circuit setup

R1 

R2 

R3 

R4 

R6 

R5 

R7 

R8 

K1 

K1 

K2 

K2 

K3 

K3 

a single honnest Onion Router on the TOR circuit guarantees
anonymity against an attacker controlling some Onion Routers

25 / 34



The (simplified) TOR message flow - circuit setup

C R1 R2 R3 S

aenc(pk1,g
x1 )−−−−−−−−→

gy1 ,H(gx1y1 )←−−−−−−−−
{R2,aenc(pk2,g

x2 )}gx1y1−−−−−−−−−−−−−−−→
aenc(pk2,g

x2 )−−−−−−−−→
gy2 ,H(gx2y2 )←−−−−−−−−

{gy2 ,H(gx2y2 )}gx1y1←−−−−−−−−−−−−−
{R2,{R3,aenc(pk3,g

x3 )}gx2y2 }gx1y1−−−−−−−−−−−−−−−−−−−−−−→
{R3,aenc(pk3,g

x3 )}gx2y2−−−−−−−−−−−−−−−→
aenc(pk3,g

x3 )−−−−−−−−→
gy3 ,H(gx3y3 )←−−−−−−−−

{gy3 ,H(gx3y3 )}gx2y2←−−−−−−−−−−−−−
{{gy3 ,H(gx3y3 )}gx2y2 }gx1y1←−−−−−−−−−−−−−−−−−−

26 / 34



The (simplified) TOR message flow - actual
communication

C R1 R2 R3 S

{R2,{R3,{S,m}gx3y3 }gx2y2 }gx1y1−−−−−−−−−−−−−−−−−−−−−→
{R3,{S,m}gx3y3 }gx2y2−−−−−−−−−−−−−−→

{S,m}gx3y3−−−−−−−→
m−→
r←−

{r}gx3y3←−−−−−
{{r}gx3y3 }gx2y2←−−−−−−−−−−

{{{r}gx3y3 }gx2y2 }gx1y1←−−−−−−−−−−−−−−−

27 / 34



TOR only provides privacy - not confidentiality

I TOR anonymises the origin of the traffic

I TOR encrypts everything inside the TOR network

I but TOR DOES NOT encrypt all traffic through the Internet

I for confidentiality you still need to use end-to-end encryption
such as SSL/TLS

28 / 34



TOR takes care of DNS resolution

I TOR only anonymises TCP streams

I But, DNS resolution is executed over UDP

I So, DNS resolution if handled by the client browser defeats
the purpose of using TOR

I To avoid privacy breaches due to DNS resolution, the TOR
browser delegates DNS resolution to the exit node

29 / 34



Avoiding censorship

I TOR relays are listed on the public TOR directory

I So your local ISP can observe that you are communicating
with TOR nodes

I ISPs and governments can try to block access to the TOR
network by blocking TOR relays

I TOR bridge relays are relays not listed on the public TOR
directory

I Entering the TOR network thtough a TOR bridge relay can
prevent ISPs and governments blocking access to the TOR
network

30 / 34



Limitations of TOR

I TOR does not provide protection against end-to-end timing
attacks

I If the attacker can see both ends of the communication
channel, he can correlate volume and timing information on
the two sides

31 / 34



whatismyipaddress.com cannot tell where am I
using TOR

32 / 34

whatismyipaddress.com


google.com thinks I’m in the Netherlands using
TOR

33 / 34

google.com


TOR hidden services

I TOR can also provide anonymity to websites and servers

I www.torproject.org/docs/hidden-services.html

34 / 34

www.torproject.org/docs/hidden-services.html

