
The SSL/TLS protocol

Myrto Arapinis
School of Informatics

University of Edinburgh

October 27, 2016

1 / 27



SSL/TLS protocol

Goals: Confidentiality, Integrity, Non repudiation

SSL/TLS use X.509 certificates and hence asymmetric
cryptography to exchange a symmetric key. This session key is
then used to encrypt subsequent communication. This allows for
data/message confidentiality, and message authentication codes
for message integrity and thus, message authentication.

2 / 27



SSL/TLS protocol

3 / 27



SSL/TLS protocol

4 / 27



TCP/IP protocol stack

I TCP/IP provides end-to-end connectivity and is organized
into four abstraction layers which are used to sort all related
protocols according to the scope of networking involved

I The SSL/TLS library operates above the transport layer (uses
TCP) but below application protocols

5 / 27



SSL/TLS protocol layers

6 / 27



SSL/TLS handshake protocol

7 / 27



Client Hello

8 / 27



Server Hello

9 / 27



Certificate

10 / 27



www.gmail.com’s certificate

11 / 27

www.gmail.com


Key exchange

12 / 27



Change cipher spec

13 / 27



www.mitls.org

14 / 27

www.mitls.org


SSL/TLS renegotiation

Client and server are allowed to initiate renegotiation of the session
encryption in order to:

I Refresh keys

I Increase authentication

I Increase cipher strength

I . . .

Client or server can trigger renegotiation by sending a hello
meesage

15 / 27



SSL/TLS renegotiation weaknesses

I Renegotiation has priority over application data!

I Renegotiation can take place in the middle of an application
layer transaction!

(Detailed on the board)

Incorrect implicit assumtion: the client doesn’t change through
renegotiation

16 / 27



Marsh Ray’s plaintext injection attack on HTTPS

Attacker:
GET /pizza?toppings=pepperoni;address=attacker str HTTP/1.1

X-Ignore-This:(no carriage return)

Victim:
GET /pizza?toppings=sausage;address=victim str HTTP/1.1

Cookie:victim cookie

Result:
GET /pizza?toppings=pepperoni;address=attacker str HTTP/1.1

X-Ignore-This:GET /pizza?toppings=sausage;address=victim str HTTP/1.1

Cookie:victim cookie

⇒ Server uses victim’s account to send a pizza to attacker!

17 / 27



Marsh Ray’s plaintext injection attack on HTTPS

Attacker:
GET /pizza?toppings=pepperoni;address=attacker str HTTP/1.1

X-Ignore-This:(no carriage return)

Victim:
GET /pizza?toppings=sausage;address=victim str HTTP/1.1

Cookie:victim cookie

Result:
GET /pizza?toppings=pepperoni;address=attacker str HTTP/1.1

X-Ignore-This:GET /pizza?toppings=sausage;address=victim str HTTP/1.1

Cookie:victim cookie

⇒ Server uses victim’s account to send a pizza to attacker!

17 / 27



Marsh Ray’s plaintext injection attack on HTTPS

Attacker:
GET /pizza?toppings=pepperoni;address=attacker str HTTP/1.1

X-Ignore-This:(no carriage return)

Victim:
GET /pizza?toppings=sausage;address=victim str HTTP/1.1

Cookie:victim cookie

Result:
GET /pizza?toppings=pepperoni;address=attacker str HTTP/1.1

X-Ignore-This:GET /pizza?toppings=sausage;address=victim str HTTP/1.1

Cookie:victim cookie

⇒ Server uses victim’s account to send a pizza to attacker!

17 / 27



Marsh Ray’s plaintext injection attack on HTTPS

Attacker:
GET /pizza?toppings=pepperoni;address=attacker str HTTP/1.1

X-Ignore-This:(no carriage return)

Victim:
GET /pizza?toppings=sausage;address=victim str HTTP/1.1

Cookie:victim cookie

Result:
GET /pizza?toppings=pepperoni;address=attacker str HTTP/1.1

X-Ignore-This:GET /pizza?toppings=sausage;address=victim str HTTP/1.1

Cookie:victim cookie

⇒ Server uses victim’s account to send a pizza to attacker!

17 / 27



Marsh Ray’s plaintext injection attack on HTTPS

Attacker:
GET /pizza?toppings=pepperoni;address=attacker str HTTP/1.1

X-Ignore-This:(no carriage return)

Victim:
GET /pizza?toppings=sausage;address=victim str HTTP/1.1

Cookie:victim cookie

Result:
GET /pizza?toppings=pepperoni;address=attacker str HTTP/1.1

X-Ignore-This:GET /pizza?toppings=sausage;address=victim str HTTP/1.1

Cookie:victim cookie

⇒ Server uses victim’s account to send a pizza to attacker!

17 / 27



Anil Kurmus’ plaintext injection attack on HTTPS

Twitter status updates using its API by posting the new status to
http://twitter.com/statuses/update.xml, as well as the user name
and password

Attacker:
POST /statuses/update.xml HTTP/1.1

Authorization: Basic username:password

User-Agent: curl/7.19.5

Host: twitter.com

Accept:*/*

Content-Length: 140

Content-Type: application/x-www-form-urlencoded

status=

Victim:
POST /statuses/update.xml HTTP/1.1

Authorization: Basic username:password...

⇒ the attacker gets the user name and password of the victim!

18 / 27



Anil Kurmus’ plaintext injection attack on HTTPS

Twitter status updates using its API by posting the new status to
http://twitter.com/statuses/update.xml, as well as the user name
and password

Attacker:
POST /statuses/update.xml HTTP/1.1

Authorization: Basic username:password

User-Agent: curl/7.19.5

Host: twitter.com

Accept:*/*

Content-Length: 140

Content-Type: application/x-www-form-urlencoded

status=

Victim:
POST /statuses/update.xml HTTP/1.1

Authorization: Basic username:password...

⇒ the attacker gets the user name and password of the victim!

18 / 27



Anil Kurmus’ plaintext injection attack on HTTPS

Twitter status updates using its API by posting the new status to
http://twitter.com/statuses/update.xml, as well as the user name
and password

Attacker:
POST /statuses/update.xml HTTP/1.1

Authorization: Basic username:password

User-Agent: curl/7.19.5

Host: twitter.com

Accept:*/*

Content-Length: 140

Content-Type: application/x-www-form-urlencoded

status=

Victim:
POST /statuses/update.xml HTTP/1.1

Authorization: Basic username:password...

⇒ the attacker gets the user name and password of the victim!

18 / 27



Anil Kurmus’ plaintext injection attack on HTTPS

Twitter status updates using its API by posting the new status to
http://twitter.com/statuses/update.xml, as well as the user name
and password

Attacker:
POST /statuses/update.xml HTTP/1.1

Authorization: Basic username:password

User-Agent: curl/7.19.5

Host: twitter.com

Accept:*/*

Content-Length: 140

Content-Type: application/x-www-form-urlencoded

status=

Victim:
POST /statuses/update.xml HTTP/1.1

Authorization: Basic username:password...

⇒ the attacker gets the user name and password of the victim!

18 / 27



Anil Kurmus’ plaintext injection attack on HTTPS

Twitter status updates using its API by posting the new status to
http://twitter.com/statuses/update.xml, as well as the user name
and password

Attacker:
POST /statuses/update.xml HTTP/1.1

Authorization: Basic username:password

User-Agent: curl/7.19.5

Host: twitter.com

Accept:*/*

Content-Length: 140

Content-Type: application/x-www-form-urlencoded

status=

Victim:
POST /statuses/update.xml HTTP/1.1

Authorization: Basic username:password...

⇒ the attacker gets the user name and password of the victim!

18 / 27



The SAML Signle Sign On (SSO) protocol

19 / 27



SAML SSO protocol

20 / 27



SAML SSO protocol

21 / 27



SAML SSO protocol

22 / 27



SAML SSO protocol (OASIS 2005)

23 / 27



Google’s implementation of SSO

Google’s SAML-based Single Sign-On for Google Applications
deviates from the above protocol for a few, seemingly minor
simplifications in the messages exchanged:

G1. ID and SP are not included in the authentication assertion,
i.e. AA = AuthAssert(C ; IdP) instead of
AuthAssert(ID;C ; IdP;SP);

G2. ID, SP and IdP are not included in the response, i.e.
Resp = Response({AA}K−1

IdP
) instead of

Response(ID;SP; IdP; {AA}K−1
IdP

).

24 / 27



Attack Google’s SSO implementation

[A. Armando, R. Carbone, L. Compagna, J. Cullar, L. Tobarra, ”Formal
analysis of SAML 2.0 web browser single sign-on: breaking the SAML-based
single sign-on for google apps”, (FMSE’08)]

25 / 27



SAML SSO protocol (OASIS 2012)

26 / 27



Attack SAML SSO protocol (OASIS 2012)

[A. Armando, R. Carbone, L. Compagna, J. Cullar, G. Pellegrino, A. Sorniotti,
”From Multiple Credentials to Browser-Based Single Sign-On: Are We More
Secure?”, Chapter in Future Challenges in Security and Privacy for Academia
and Industry]

⇒ XSS attack on SAML-base SSO for Google Apps

27 / 27


