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Credit card payment

» Is it a real card?

» Is the pin protected?
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Behavior in the usual case

The waiter introduces the credit card
The waiter enters the amount m of the transaction

The terminal authenticates the card

1.
2.
3.
4.

The costumer enters his secret pin

If the amount m is greater than 100 euros (and in only 20%
of the cases)

4.1 The terminal asks for authentication of the card

4.2 The bank provides authentication
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More details

4 actors: Bank, Customer, Card, and Terminal

Bank owns:
» a secret signing key skg
» a public verification key pkg

> a secret symmetric encryption key per card K¢

Card owns:
» Data: last name, first name, card’'s number, expiration date
» Signature's value VS = {hash(Data)}s,

» a secret symmetric encryption shared with the bank Kcpg

Terminal owns:

» the public verification key pkg
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Credit card payment protocol (in short)

The terminal reads the card:
1. Ca — T : Data,{hash(Data)}s,

The terminal asks for the secret pin:
2. T — Cu : pin?
3. Cu — Ca : 1234
4. Ca — T : ok

The terminal calls the bank

5. T - B auth?

6. B — T NB

7. T — CQCa NB

8. Ca —» T {NB}KCb

9. T — B {NB}KCb
10. B —- T ok
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The security was initially ensured by:
» the cards were difficult to reproduce

» the protocol (!) and keys were secret

~
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The security was initially ensured by:
» the cards were difficult to reproduce

» the protocol (!) and keys were secret

But:
» cryptographic flaw: 320-bit keys can be broken (1988),

» logical flaw: no link between the secret code and the
authentication of the card,

» fake cards can be built.

= “YesCard" built by Serge Humpich (France, 1998)

~

28



How does the “YesCard” work?

Logical flaw
1. Ca — T : Data,{hash(Data)}s,
2. T — Cu : pin?
3. Cu — Ca : 1234
4. Ca — T : ok
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How does the “YesCard” work?

Logical flaw
1. Ca — T : Data,{hash(Data)}s,
2. T — Cu : pin?
3. & — Cd . 5678
4. Cd — T : ok

There is always someone to debit
— creation of a fake card

1. Ca — T XXXX, {hash(XXXX)}eks
2. T — Cd : pin?

3. G — G4 : 0000

4, G — T : ok
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The SSL/TLS protocol



SSL/TLS protocol

Goals: Confidentiality, Integrity, Non repudiation
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SSL/TLS use X.509 certificates and hence asymmetric
cryptography to exchange a symmetric key. This session key is
then used to encrypt subsequent communication. This allows for
data/message confidentiality, and message authentication codes
for message integrity and thus, message authentication.

10/28



SSL/TLS protocol
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SSL/TLS protocol
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TCP/IP protocol stack

APPLICATION LAYER
(HTTP, FTP, ETC.)

APPLICATION LAYER
(HTTP, FTP, ETC.)

TRANSPORT LAYER
(TCP)

SECURITY LAYER
(TLS/SSL)
TRANSPORT LAYER
(TCP)

INTERNET LAYER

() INTERNET LAYER
(1P)
NETWORK LAYER NETWORK LAYER

» TCP/IP provides end-to-end connectivity and is organized
into four abstraction layers which are used to sort all related
protocols according to the scope of networking involved

» The SSL/TLS library operates above the transport layer (uses

TCP) but below application protocols
=] 5 = = £ DA
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SSL/TLS protocol layers
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dshake protocol

SSL/TLS

Customer

oS-

Hello, let’s set up a secure SSL session
Hello, here is my certificate
Also checks that

© Certificate is valid
@ Signed by someone

n? user trusts 2

3 Here is a one time, encryption key for our session

—

4 Server decrypts session key using its private
key and establishes a secure session

01010010110 01010010110
r7i
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SSL/TLS renegotiation

Client and server are allowed to initiate renegotiation of the session
encryption in order to:

v

Refresh keys

Increase authentication

v

v

Increase cipher strength

Client or server can trigger renegotiation by sending a hello
meesage
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SSL/TLS renegotiation weaknesses

» Renegotiation has priority over application data!

» Renegotiation can take place in the middle of an application
layer transaction!

Client Attacker Server (HTTPS)

®

(Detailed on the board)

Incorrect implicit assumtion: the client doesn’t change through
renegotiation
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Marsh Ray’s plaintext injection attack on HTTPS




Marsh Ray’s plaintext injection attack on HTTPS

Attacker:
GET /pizza?toppings=pepperoni;address=attacker_str HTTP/1.1
X-Ignore-This: (no carriage return)
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Marsh Ray’s plaintext injection attack on HTTPS

Attacker:
GET /pizza?toppings=pepperoni;address=attacker_str HTTP/1.1
X-Ignore-This: (no carriage return)

Victim:
GET /pizza?toppings=sausage;address=victim_str HTTP/1.1
Cookie:victim cookie

Result:
GET /pizza?toppings=pepperoni;address=attacker_str HTTP/1.1

X-Ignore-This:GET /pizza?toppings=sausage;address=victim_str HTTP/1.1
Cookie:victim_cookie

= Server uses victim’s account to send a pizza to attacker!
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Anil Kurmus’ plaintext injection attack on HTTPS

Twitter status updates using its APl by posting the new status to
http://twitter.com /statuses/update.xml, as well as the user name
and password
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Anil Kurmus’ plaintext injection attack on HTTPS

Twitter status updates using its APl by posting the new status to
http://twitter.com /statuses/update.xml, as well as the user name
and password

Attacker:

POST /statuses/update.xml HTTP/1.1
Authorization: Basic username:password
User-Agent: curl/7.19.5

Host: twitter.com

Accept:*/*

Content-Length: 140

Content-Type: application/x-www-form-urlencoded
status=

Victim:
POST /statuses/update.xml HTTP/1.1
Authorization: Basic username:password...

= the attacker gets the user name and password of the victim!
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The SAML Signle Sign On (SSO) protocol



SAML SSO protocol
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SAML SSO protocol
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SAML SSO protocol
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SAML SSO protocol (OASIS 2005)
. c 1P

S1.

C,SP,URI

Al. C,IdP, A

uthReq(ID, SP), URI

REDIRECT

SAML Aut

A2. C,IdP, Auth

rentication Protocol

Req(ID, SP), URI

A3. Response(ID, SP, IdP, {AA}K'—le), URI

\

\
, IdP builds an authentication assertion

I AA= AuthAssert(ID, C, IdP, SP)

’

G

OST

A4. Response(ID,

SP,1dP, {AA}y_. ), URI

1

S2

Resource
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Google’s implementation of SSO

Google’s SAML-based Single Sign-On for Google Applications
deviates from the above protocol for a few, seemingly minor
simplifications in the messages exchanged:

G1. ID and SP are not included in the authentication assertion,

i.e. AA = AuthAssert(C; IdP) instead of
AuthAssert(ID; C; IdP; SP);

G2. ID, SP and IdP are not included in the response, i.e.
Resp = Response({AA} 1) instead of
IdP
Response(/D; SP; IdP; {AA}K/;;).



Attack Google’'s SSO implementation

[A. Armando, R. Carbone, L. Compagna, J. Cullar, L. Tobarra, " Formal
analysis of SAML 2.0 web browser single sign-on: breaking the SAML-based
single sign-on for google apps”, (FMSE'08)]

Intruder

S1. bob, i,uri S1. bob, google, calendar

bob2d) i2google) >@
Al. idp, authReq(id;} i), uri Al. idp,authReq(idgoogie, go0gle), calenda
i2bob) googlezi) 9

C A2. idp, authReq(id;, i), uri

As. i,respt%:?{JAA}r,).uri *, idp builds an authentication assertion
iap ,/ AA = authAssert(bob, idp)

1dp2bob)

Ad4. i,response({AA}|_;),uri Ad. google, response({AA} _1), calendar
idp “idp
Gob23) {i2google) @
S2. resource
googledi)

Legend:
A B: A sends M on ch confidential to B

M
A B: A sends M on ch authentic for A

M
A B: M is sent on ch authentic for A and confidential to B
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SAML SSO protocol (OASIS 2012)

S1. GET URI

Al. HTTP302 IdP?SAMLRequest=AuthReq(ID, SP)&RelayState=URI

SAML Authentication Protocol
A2. GET IdP?SAMLRequest=AuthReq(ID,SP)&RelayState=URI

>

EEEEEEEEEEE \“ IdP builds an authentication assertion
A3. HTTP200 Form(...) , AA = AuthAssert(ID, C,1dP,SP)

A4( POST SP?SAMLResponse=Response(ID, SP, IdP, {AA}delp )&RelayState=URI

>

S2. HTTP200 Resource(URI)
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Attack SAML SSO protocol (OASIS 2012)

[A. Armando, R. Carbone, L. Compagna, J. Cullar, G. Pellegrino, A. Sorniotti,
"From Multiple Credentials to Browser-Based Single Sign-On: Are We More
Secure?”, Chapter in Future Challenges in Security and Privacy for Academia

and Industry]

S1. GET urj S1. GET uri
Al. HTTP302 idp? . Al. HTTP302 idp? .
SAMLRequest=AuthReq(id, sp) SAMLRequest=AuthReq(id, sp)
&RelayState=url &RelayState=uri

A2. GET idp?SAMLRequest=AuthReq(id, sp)&RelayState=uri

‘ EEEEEEEEmEEE > \‘\ idp builds an authentication assertion
A3. HTTP200 Form(...) | ,AA= AuthAssert(id,c,idp,sp)

A4. POST sp?SAMLResponse¢=Response(id, sp,idp, {AA}x-1 )&RelayState=uri
idp

HTTP200 Resoujyce(uri)

w0
[~

= XSS attack on SAML-base SSO for Google Apps
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