Cryptographic protocols (I1)

Myrto Arapinis
School of Informatics
University of Edinburgh

March 17, 2016

Credit card payment protocol

Credit card payment

28

Credit card payment

» Is it a real card?

28

Credit card payment

» Is it a real card?

» Is the pin protected?

28

Behavior in the usual case

1. The waiter introduces the credit card

28

Behavior in the usual case

1. The waiter introduces the credit card

2. The waiter enters the amount m of the transaction

28

Behavior in the usual case

1. The waiter introduces the credit card
2. The waiter enters the amount m of the transaction

3. The terminal authenticates the card

28

Behavior in the usual case

1.
2.
3.
4.

The waiter introduces the credit card
The waiter enters the amount m of the transaction
The terminal authenticates the card

The costumer enters his secret pin

28

Behavior in the usual case

The waiter introduces the credit card
The waiter enters the amount m of the transaction

The terminal authenticates the card

1.
2.
3.
4.

The costumer enters his secret pin

If the amount m is greater than 100 euros (and in only 20%
of the cases)

4.1 The terminal asks for authentication of the card

4.2 The bank provides authentication

28

More details

4 actors: Bank, Customer, Card, and Terminal

Bank owns:
» a secret signing key skg
» a public verification key pkg

> a secret symmetric encryption key per card K¢

Card owns:
» Data: last name, first name, card’'s number, expiration date
» Signature's value VS = {hash(Data)}s,

» a secret symmetric encryption shared with the bank Kcpg

Terminal owns:

» the public verification key pkg

5/28

Credit card payment protocol (in short)

The terminal reads the card:
1. Ca — T : Data,{hash(Data)}s,

Credit card payment protocol (in short)

The terminal reads the card:
1. Ca — T : Data,{hash(Data)}s,

The terminal asks for the secret pin:
2. T — Cu : pin?
3. Cu — Ca : 1234
4. Ca — T : ok

6/28

Credit card payment protocol (in short)

The terminal reads the card:
1. Ca — T : Data,{hash(Data)}s,

The terminal asks for the secret pin:
2. T — Cu : pin?
3. Cu — Ca : 1234
4. Ca — T : ok

The terminal calls the bank

5. T - B auth?

6. B — T NB

7. T — CQCa NB

8. Ca —» T {NB}KCb

9. T — B {NB}KCb
10. B —- T ok

6/28

The security was initially ensured by:
» the cards were difficult to reproduce

» the protocol (!) and keys were secret

~

28

The security was initially ensured by:
» the cards were difficult to reproduce

» the protocol (!) and keys were secret

But:
» cryptographic flaw: 320-bit keys can be broken (1988),

» logical flaw: no link between the secret code and the
authentication of the card,

» fake cards can be built.

~

28

The security was initially ensured by:
» the cards were difficult to reproduce

» the protocol (!) and keys were secret

But:
» cryptographic flaw: 320-bit keys can be broken (1988),

» logical flaw: no link between the secret code and the
authentication of the card,

» fake cards can be built.

= “YesCard" built by Serge Humpich (France, 1998)

~

28

How does the “YesCard” work?

Logical flaw
1. Ca — T : Data,{hash(Data)}s,
2. T — Cu : pin?
3. Cu — Ca : 1234
4. Ca — T : ok

How does the “YesCard” work?

Logical flaw
1. Ca
2. T
3. C/
4. Cd

L1l

Cu
ca

Data, {hash(Data) }sk,
pin?

5678

ok

How does the “YesCard” work?

Logical flaw
1. Ca — T : Data,{hash(Data)}s,
2. T — Cu : pin?
3. & — Cd . 5678
4. Cd — T : ok

There is always someone to debit

How does the “YesCard” work?

Logical flaw
1. Ca — T : Data,{hash(Data)}s,
2. T — Cu : pin?
3. & — Cd . 5678
4. Cd — T : ok

There is always someone to debit
— creation of a fake card

How does the “YesCard” work?

Logical flaw
1. Ca — T : Data,{hash(Data)}s,
2. T — Cu : pin?
3. & — Cd . 5678
4. Cd — T : ok

There is always someone to debit
— creation of a fake card

1. Ca — T XXXX, {hash(XXXX)}eks
2. T — Cd : pin?

3. G — G4 : 0000

4, G — T : ok

28

The SSL/TLS protocol

SSL/TLS protocol

Goals: Confidentiality, Integrity, Non repudiation

. Wells Fargo|
:. Bank
Certificate

~
~

()

-~ = 3
- - ~
@ @ g Secure SSL N @
: D - Connection

lell Fargo
Bank
| Web Site

—d
-

SSL/TLS use X.509 certificates and hence asymmetric
cryptography to exchange a symmetric key. This session key is
then used to encrypt subsequent communication. This allows for
data/message confidentiality, and message authentication codes
for message integrity and thus, message authentication.

10/28

SSL/TLS protocol

& safari File Edit View History Develop Window _Help

[IRO)

3

100% =% Thu 13 Feb 02:27 Q iE

6 0 6 Gmail

> | (2] | + B hups @ accounts.google.com

Computer Security * Conferences Books Project Free . =Season 1 Ubuntu~ Apple iCloud Tutoring *

¢ | reader | (O]
m

Google

One account. All of Google.

Sign in to continue to Gmail

Myrto Arapinis
myrto.arapinis@gmail.com

e accounts on this device

One Google Account for everything Google

BEMe6O 2> HE

11/28

SSL/TLS protocol

om/ServiceLogin?servic:

(B hteps @ a

ccounts.google.com/ 5S¢

Myrto Arapinis

myrto.arapinis@gmail.com
Password
Need help?

Manage accounts on this device

One Google Account for everything Google

»

Qe
12/28

TCP/IP protocol stack

APPLICATION LAYER
(HTTP, FTP, ETC.)

APPLICATION LAYER
(HTTP, FTP, ETC.)

TRANSPORT LAYER
(TCP)

SECURITY LAYER
(TLS/SSL)
TRANSPORT LAYER
(TCP)

INTERNET LAYER

() INTERNET LAYER
(1P)
NETWORK LAYER NETWORK LAYER

» TCP/IP provides end-to-end connectivity and is organized
into four abstraction layers which are used to sort all related
protocols according to the scope of networking involved

» The SSL/TLS library operates above the transport layer (uses

TCP) but below application protocols
=] 5 = = £ DA
13/28

SSL/TLS protocol layers

Application
Layer HTTP FTP Tehet Other
PRTTEETTEES Leccccczcooooooooomoooooosooooooooooomms .
Handshale Change
Layer Harndshake Cipher Spec Alert
SSL/
TLS
Record
Layer Record
ey =
Transport
Layer TCP/IP

14 /28

dshake protocol

SSL/TLS

Customer

oS-

Hello, let’s set up a secure SSL session
Hello, here is my certificate
Also checks that

© Certificate is valid
@ Signed by someone

n? user trusts 2

3 Here is a one time, encryption key for our session

—

4 Server decrypts session key using its private
key and establishes a secure session

01010010110 01010010110
r7i

15/28

SSL/TLS renegotiation

Client and server are allowed to initiate renegotiation of the session
encryption in order to:

v

Refresh keys

Increase authentication

v

v

Increase cipher strength

Client or server can trigger renegotiation by sending a hello
meesage

16 /28

SSL/TLS renegotiation weaknesses

» Renegotiation has priority over application data!

» Renegotiation can take place in the middle of an application
layer transaction!

Client Attacker Server (HTTPS)

®

(Detailed on the board)

Incorrect implicit assumtion: the client doesn’t change through
renegotiation

17/28

Marsh Ray’s plaintext injection attack on HTTPS

Marsh Ray’s plaintext injection attack on HTTPS

Attacker:
GET /pizza?toppings=pepperoni;address=attacker_str HTTP/1.1
X-Ignore-This: (no carriage return)

18 /28

Marsh Ray’s plaintext injection attack on HTTPS

Attacker:
GET /pizza?toppings=pepperoni;address=attacker_str HTTP/1.1
X-Ignore-This: (no carriage return)

Victim:

GET /pizza?toppings=sausage;address=victim_str HTTP/1.1
Cookie:victim_cookie

18 /28

Marsh Ray’s plaintext injection attack on HTTPS

Attacker:
GET /pizza?toppings=pepperoni;address=attacker_str HTTP/1.1
X-Ignore-This: (no carriage return)

Victim:
GET /pizza?toppings=sausage;address=victim_str HTTP/1.1
Cookie:victim_cookie

Result:

GET /pizza?toppings=pepperoni;address=attacker_str HTTP/1.1
X-Ignore-This:GET /pizza?toppings=sausage;address=victim_str HTTP/1.1
Cookie:victim_cookie

18/28

Marsh Ray’s plaintext injection attack on HTTPS

Attacker:
GET /pizza?toppings=pepperoni;address=attacker_str HTTP/1.1
X-Ignore-This: (no carriage return)

Victim:
GET /pizza?toppings=sausage;address=victim_str HTTP/1.1
Cookie:victim cookie

Result:
GET /pizza?toppings=pepperoni;address=attacker_str HTTP/1.1

X-Ignore-This:GET /pizza?toppings=sausage;address=victim_str HTTP/1.1
Cookie:victim_cookie

= Server uses victim’s account to send a pizza to attacker!

18/28

Anil Kurmus’ plaintext injection attack on HTTPS

Anil Kurmus’ plaintext injection attack on HTTPS

Twitter status updates using its APl by posting the new status to
http://twitter.com /statuses/update.xml, as well as the user name
and password

19/28

Anil Kurmus’ plaintext injection attack on HTTPS

Twitter status updates using its APl by posting the new status to
http://twitter.com /statuses/update.xml, as well as the user name
and password

Attacker:

POST /statuses/update.xml HTTP/1.1
Authorization: Basic username:password
User-Agent: curl/7.19.5

Host: twitter.com

Accept:*/*

Content-Length: 140

Content-Type: application/x-www-form-urlencoded
status=

19/28

Anil Kurmus’ plaintext injection attack on HTTPS

Twitter status updates using its APl by posting the new status to
http://twitter.com /statuses/update.xml, as well as the user name
and password

Attacker:

POST /statuses/update.xml HTTP/1.1
Authorization: Basic username:password
User-Agent: curl/7.19.5

Host: twitter.com

Accept:*/*

Content-Length: 140

Content-Type: application/x-www-form-urlencoded
status=

Victim:
POST /statuses/update.xml HTTP/1.1
Authorization: Basic username:password...

19/28

Anil Kurmus’ plaintext injection attack on HTTPS

Twitter status updates using its APl by posting the new status to
http://twitter.com /statuses/update.xml, as well as the user name
and password

Attacker:

POST /statuses/update.xml HTTP/1.1
Authorization: Basic username:password
User-Agent: curl/7.19.5

Host: twitter.com

Accept:*/*

Content-Length: 140

Content-Type: application/x-www-form-urlencoded
status=

Victim:
POST /statuses/update.xml HTTP/1.1
Authorization: Basic username:password...

= the attacker gets the user name and password of the victim!

19/28

The SAML Signle Sign On (SSO) protocol

SAML SSO protocol

® Chrome File Edit View History Window _Help &9 3

© OO mmpac - Homepage x ®

= C' [www.bbc.co.uk

BERE o siein News Sport = Weather iPlayer =TV = Radio More ~ Search Q

THURSDAY
13 FEBRUARY

Storm updates: Get the Triple killer's accomplices = Fulham 2-3 Liverpool

latest for where you are guilty
BBC NEWS BBC SPORT
= UK parties Will block money union' = Decisive day for Team GB in Sochi
= Comedian Sid Caesar dies at 91 » Collingwood handed England role
= Camey adjusts interest rates policy | = Arsenal 0-0 Manchester United
= Ketamine to become Class B drug | = Everton fan's 30-year wait goes on
LOCAL NEWS | LONDON FOOTBALL
o) = Man pleads guilty to Rigby videos « Weather hits Premier League
= Ex-Guildhall teacher on rape charges program.
BBC ONE | COMEDY BBC RADIO 2| FACTUAL = Murdered boy's parents collect MBE | * Newcastle United 04 Tottenham
Outnumbered David Attenborough and th... Ho!
Episode 3 = Hodgson rules out Terry retum
——
BBC now Entertainment News Lifestyle Knowledge Sport

https://ss1.bbc.co.uk/id/signin

21/28

SAML SSO protocol

© 00 'mmsc-signin x

« c 8 https://ssl.bbe.co.uk/id/signin
BEAE | 0 s News | Sport | Weather

O SIGN IN Bec D

Don'thave a BBC iD? Please register. Other ways to sign in
Youllbe signad in o the BBC for 30 days.

==

Plaase only use these i you ars 16 orover,

Email or username

W won'share o post your actay o Facsbaok or
assword Googe
About BBC iD
Forgot your peseword?
e Simple
7 Remember me Unick oo using a shared somputer. Ragaarqucky and easy o corman, s

favourkas, and mor

Safe
W store your information secural, and wo
never share # without your permission.

Cancel

Spam-free
Wo'loniy send you emais i you ask for them,

88CD help

i\Nonder _rrlow :IIu P:l:l(up w::..r e
vrn g RS IEE

News Sport Woathor 1Player ™ Radio

https://5s1.bbc.co.uk/id/ statecookie/google.com pebles Comedy Food History Learning

Qe
22/28

SAML SSO protocol

® Chrome File Edit View History Window _Help B O % 2 <) 3 105G Thul3Feb 00:50 Q =
)

© OO/ Esignin - Google Accounts
€« C' | @ https://accounts.google.com/ServiceLogin?service=Iso&passive=1209600&continue=https:/ /accounts.google.com/o/oauth2 /auth?scope%3Dhttps:/ /www.googleapis.com

Google

Sign in with your Google Account

o]
R

Need help?

Create an account

One Google Account for everything Google

EM&eOD 2> B

Google Privacy & Terms Help

23 /28

SAML SSO protocol (OASIS 2005)
. c 1P

S1.

C,SP,URI

Al. C,IdP, A

uthReq(ID, SP), URI

REDIRECT

SAML Aut

A2. C,IdP, Auth

rentication Protocol

Req(ID, SP), URI

A3. Response(ID, SP, IdP, {AA}K'—le), URI

\

\
, IdP builds an authentication assertion

I AA= AuthAssert(ID, C, IdP, SP)

’

G

OST

A4. Response(ID,

SP,1dP, {AA}y_.), URI

1

S2

Resource

24 /28

Google’s implementation of SSO

Google’s SAML-based Single Sign-On for Google Applications
deviates from the above protocol for a few, seemingly minor
simplifications in the messages exchanged:

G1. ID and SP are not included in the authentication assertion,

i.e. AA = AuthAssert(C; IdP) instead of
AuthAssert(ID; C; IdP; SP);

G2. ID, SP and IdP are not included in the response, i.e.
Resp = Response({AA} 1) instead of
IdP
Response(/D; SP; IdP; {AA}K/;;).

Attack Google’'s SSO implementation

[A. Armando, R. Carbone, L. Compagna, J. Cullar, L. Tobarra, " Formal
analysis of SAML 2.0 web browser single sign-on: breaking the SAML-based
single sign-on for google apps”, (FMSE'08)]

Intruder

S1. bob, i,uri S1. bob, google, calendar

bob2d) i2google) >@
Al. idp, authReq(id;} i), uri Al. idp,authReq(idgoogie, go0gle), calenda
i2bob) googlezi) 9

C A2. idp, authReq(id;, i), uri

As. i,respt%:?{JAA}r,).uri *, idp builds an authentication assertion
iap ,/ AA = authAssert(bob, idp)

1dp2bob)

Ad4. i,response({AA}|_;),uri Ad. google, response({AA} _1), calendar
idp “idp
Gob23) {i2google) @
S2. resource
googledi)

Legend:
A B: A sends M on ch confidential to B

M
A B: A sends M on ch authentic for A

M
A B: M is sent on ch authentic for A and confidential to B

26 /28

SAML SSO protocol (OASIS 2012)

S1. GET URI

Al. HTTP302 IdP?SAMLRequest=AuthReq(ID, SP)&RelayState=URI

SAML Authentication Protocol
A2. GET IdP?SAMLRequest=AuthReq(ID,SP)&RelayState=URI

>

EEEEEEEEEEE \“ IdP builds an authentication assertion
A3. HTTP200 Form(...) , AA = AuthAssert(ID, C,1dP,SP)

A4(POST SP?SAMLResponse=Response(ID, SP, IdP, {AA}delp)&RelayState=URI

>

S2. HTTP200 Resource(URI)

27 /28

Attack SAML SSO protocol (OASIS 2012)

[A. Armando, R. Carbone, L. Compagna, J. Cullar, G. Pellegrino, A. Sorniotti,
"From Multiple Credentials to Browser-Based Single Sign-On: Are We More
Secure?”, Chapter in Future Challenges in Security and Privacy for Academia

and Industry]

S1. GET urj S1. GET uri
Al. HTTP302 idp? . Al. HTTP302 idp? .
SAMLRequest=AuthReq(id, sp) SAMLRequest=AuthReq(id, sp)
&RelayState=url &RelayState=uri

A2. GET idp?SAMLRequest=AuthReq(id, sp)&RelayState=uri

‘ EEEEEEEEmEEE > \‘\ idp builds an authentication assertion
A3. HTTP200 Form(...) | ,AA= AuthAssert(id,c,idp,sp)

A4. POST sp?SAMLResponse¢=Response(id, sp,idp, {AA}x-1)&RelayState=uri
idp

HTTP200 Resoujyce(uri)

w0
[~

= XSS attack on SAML-base SSO for Google Apps

28 /28

